001     852737
005     20240610115332.0
024 7 _ |a 10.1103/PhysRevE.98.022605
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/19743
|2 Handle
024 7 _ |a pmid:30253508
|2 pmid
024 7 _ |a WOS:000441466800008
|2 WOS
024 7 _ |a altmetric:45264891
|2 altmetric
037 _ _ |a FZJ-2018-05609
082 _ _ |a 530
100 1 _ |a Abaurrea Velasco, Clara
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Collective behavior of self-propelled rods with quorum sensing
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2018-08-13
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2018-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552414038_13872
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Active agents—like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays—show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a Hydrodynamics of Active Biological Systems (jiff26_20110501)
|0 G:(DE-Juel1)jiff26_20110501
|c jiff26_20110501
|f Hydrodynamics of Active Biological Systems
|x 1
542 _ _ |i 2018-08-13
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
542 _ _ |i 2019-08-13
|2 Crossref
|u https://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abkenar, Masoud
|0 P:(DE-Juel1)157746
|b 1
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Auth, Thorsten
|0 P:(DE-Juel1)130514
|b 3
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physreve.98.022605
|b American Physical Society (APS)
|d 2018-08-13
|n 2
|p 022605
|3 journal-article
|2 Crossref
|t Physical Review E
|v 98
|y 2018
|x 2470-0045
773 _ _ |a 10.1103/PhysRevE.98.022605
|g Vol. 98, no. 2, p. 022605
|0 PERI:(DE-600)2844562-4
|n 2
|p 022605
|t Physical review / E
|v 98
|y 2018
|x 2470-0045
856 4 _ |u https://juser.fz-juelich.de/record/852737/files/PhysRevE.98.022605.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/852737/files/PhysRevE.98.022605.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:852737
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130514
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
999 C 5 |a 10.1103/PhysRevLett.110.228102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/78/5/056601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C5SM01678A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms8729
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2012.03.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.030904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.77.011920
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.88.062314
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/105/48004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C3SM52813H
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7SM00439G
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1402202111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.117.248001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c2sm25186h
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c1sm05960b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.128101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C5SM01683E
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/107/36003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.82.031904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature09312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature10874
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep34146
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/JB.188.1.305-316.2006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1046/j.1365-2958.2002.02803.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.198102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1209042
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1001994107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.fl.21.010189.000425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.84.061401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C3SM27949A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-fluid-122414-034456
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/119/66007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1230020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.268303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcis.2014.03.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.86.011901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-conmatphys-031214-014710
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.248101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1704928
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.50.1232
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.42.2126
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.92.012322
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10955-014-1008-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.158102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjst/e2014-02191-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.81.061916
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21