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Active agents—like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays—show
a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation.
The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is
determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion)
and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To
systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a
propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations.
Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and
the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of
rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive
at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more
ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost
circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing
interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with
domains appear.
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I. INTRODUCTION

Many active systems in nature show collective behavior,
ranging from sperm and bacteria [1–3] to bird flocks, fish
schools, and ant colonies [4,5]. All these systems share a
common characteristic: local alignment or jamming of neigh-
boring agents gives rise to collective behavior. This align-
ment can result from steric interaction between self-propelled
elongated particles [6–8], but it can also emerge from other
mechanisms, such as motility-induced clustering [9–11] and
long-range, visionlike interactions [12,13]. In systems with
steric interactions, the shapes of the particles strongly influ-
ences the collective behavior. Disks and spheres, for instance,
form round clusters [9,14–16], while elongated objects, such
as wormlike and rodlike particles, form elongated clusters
and are often found in swarming phases [8,17–19]. Motility
assays with cytoskeletal filaments, such as actin filaments and
microtubules, show clustering, swirling, and wavelike patterns
[20,21]. Self-propelled particles (SPPs) can also be used to
construct composite “complex objects” [11,22], where the
structure and dynamics of the self-propelled agents induce the
motility of the composite particles.

Quorum sensing is an important mechanism to coordinate
the behavior of individual agents in dense suspensions, which
results in a density-dependent propulsion force of SPPs. For
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bacteria in biofilm formation, such an interaction arises from
a concentration field of signaling molecules, which modifies
the propulsion strength when the concentration exceeds a
threshold [23,24]. Genetically modified Escerichia coli have
been found to decrease their propulsion speed at high densities
[25,26], which has been modeled by a density-dependent
diffusion coefficient [27]. This reduction of the swimming
velocity helps biofilm formation. For phoretic SPPs, decreased
propulsion at high densities due to a leveling of phoretic
gradients has been observed in simulations [28–30]. Phoretic
propulsion mechanisms occur for particles in externally im-
posed gradients of solute concentration, electric potential, or
temperature [31,32]. When phoretic SPPs are close to each
other, the gradients around the particles, and thus also the
particle propulsion, decreases [31,33–35]. Finally, for fish
schools, a reduced speed depending on both local density and
polar order has been observed [36].

SPPs accumulate where they move more slowly. Vice versa,
they may also slow down at high densities, due to steric
repulsion, biochemical signaling, or changes of the chemical
environment. The positive feedback between accumulation-
induced reduced propulsion and reduced propulsion-induced
accumulation leads to motility-induced phase separation
(MIPS) between a dense and a dilute fluid phase [37]. In
a previous simulation study, a density-dependent reduced
propulsion has been employed to mimic excluded-volume
interactions in systems of point particles with a Vicsek-type
alignment rule [38]. Bands, moving clumps, asters, and lanes
have been reported. In our simulations, we study for the first
time the combination of steric interactions and quorum sensing,
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FIG. 1. Self-propelled rods with density-dependent reduced
propulsion. Rods form polar clusters with perpendicular rods at the
borders. System with aspect ratio a/b = 9 (n = 18), ρL2 = 12.8,
E/kBT = 5, Pe = 400, λ = 1, and v1 = 0.05. Color wheel that
indicates rod orientation.

which are two physically distinct and independent mechanisms
of density-dependent slowing down, for systems of elongated
SPPs. Our generic model for the collective behavior of bacteria
and phoretic particles thus explicitely takes into account both
shape and chemical signaling.

We simulate ensembles of self-propelled rods (SPRs) with
a propulsion force that decreases with increasing number of
neighboring rods in two spatial dimensions. The rods inter-
act via a capped-repulsive potential that allows for crossing
events, such that we effectively model a thin film with the
computational costs of two-dimensional simulations [8]. The
density-dependent propulsion force gives rise to a qualitatively
different rod-rod alignment mechanism compared with the
density-independent propulsion case. This leads to new phases
that are not observed for SPRs with density-independent
propulsion: polar hedgehog clusters, asters, and polar clusters
with perpendicular rods at the cluster borders; see Fig. 1.
A density-dependent reduced propulsion force increases the
polarity of the aggregates. Increasing the range of the quorum
sensing interaction destabilizes aster formation and promotes
polar hedgehog clusters and clusters with domains.

Model, simulation technique, and numerical parameters
are introduced in Sec. II. Phase diagrams and a qualitative
description of the collective behavior are presented in Sec.
III A. In Sec. III B, we quantify the effect of density-dependent
reduced propulsion on the rod alignment and over-all polarity,
using the polar order parameter. In Sec. III C, we quantify
the effect of density-dependent reduced propulsion on rod
clustering, using rod density and cluster size distributions.
In Sec. III D, the perpendicular orientation of rods at cluster
borders, as well as aster formation are highlighted. In Sec. III E,
we study rod dynamics using autocorrelation functions for
rod orientation. The effect of the range of the quorum-sensing
interaction is investigated in Sec. IV. Finally, Sec. V contains
conclusions and outlook. Movies of the collective dynamics of
the SPRs can be found in the Supplemental Material [39].
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FIG. 2. Potential profile along a rod, E is the rod energy barrier,
and L is the rod length. The gray curve represents the potential for
the single beads, and the red curve is the sum of the contributions for
all beads of the rod.

II. MODEL AND SIMULATION TECHNIQUES

We simulate SPRs with a density-dependent propulsion
force using Brownian dynamics simulations in two dimen-
sions. Our systems consist of N rods of length L in a system
of size Lx × Ly with periodic boundary conditions. The rods
are characterized by their center of mass positions rr,i , their
orientation angles θr,i with respect to x axis, their center-of-
mass velocities vr,i , and their angular velocities ωr,i [8].

Rod-rod interactions are modeled using n beads per rod;
see Fig. 2. Beads of neighboring rods interact via a separation-
shifted Lennard-Jones potential (SSLJ) [8,40],

φ(r ) =
⎧⎨
⎩4ε

[(
σ 2

α2+r2

)6
−

(
σ 2

α2+r2

)3
]

+ φ0 r � rcut

0 r > rcut

, (1)

where r is the distance between two beads, α characterizes the
capping of the potential, and φ0 shifts the potential to avoid
a discontinuity at r = rcut. The length α =

√
21/3σ 2 − r2

cut is
calculated by requiring the potential to vanish at the minimum
of the SSLJ potential, σ/rcut = 2.5, hence the potential is
purely repulsive. E = φ(0) − φ(rcut ) is the potential energy
barrier. Once E has been set to a certain value, we obtain ε =

(a) Anti-parallel

(b) Parallel

FIG. 3. Schematic representation of rod-rod interaction and rod
propulsion. (a) Anti-parallel orientation between two rods, the angle
between the rods is π . (b) Parallel orientation between two rods, the
angle between the rods is 0.
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α12E/(α12 − 4α6σ 6 + 4σ 12). With an effective bead radius
rbead = rcut/2, and an effective rod thickness rcut, the rod aspect
ratio is a/b = L/rcut. The beads overlap a distance rcut, see
Fig. 2, such that the effective friction for rod-rod interaction is
small and no interlocking occurs [11].

In our simulations, the rod velocity is decomposed into
parallel and perpendicular components for the center-of-mass
velocity, vr = vr,‖ + vr,⊥, and the angular velocity ωr,

vri‖ = 1

γr‖

⎛
⎝ N∑

j �=i

Fri,j ‖ + ξr‖e‖ + Fp

⎞
⎠,

vri⊥ = 1

γr⊥

⎛
⎝ N∑

j �=i

Fri,j ⊥ + ξr⊥e⊥

⎞
⎠,

ωri = 1

γrθ

⎛
⎝ N∑

j �=i

Mri,j + ξrθeθ

⎞
⎠. (2)

Here, e‖ and e⊥ are unit vectors that are parallel and perpen-
dicular to the rod axis, respectively, and eθ is oriented normal
to the plane of rod motion. Fp is the propulsion force, Fri,j

and
Mri,j

are force and torque from the interaction of rod j and
rod i, respectively. The rod friction coefficients, γr‖ = γ0L,
γr⊥ = 2γr‖ and γrθ = γr‖L2/6, are obtained from hydrody-
namic calculations for the rod in the slim-body approximation.
The random noises ξr‖, ξr⊥, and ξrθ are drawn from Gaussian
distributions with variances σ 2 = 2kBT γ0/�t [8,41], where
�t is the time step used in the simulations. This ensures that
the fluctuation-dissipation theorem is fullfilled at equilibrium.

There are three energy scales in our systems: the thermal
energy kBT , the propulsion strength FpL, and the energy
barrier due to rod-rod interactions E. Dimensionless ratios can
be used in order to characterize the importance of the different
contributions. The Péclet number [8,11],

Pe = LFp

kBT
, (3)

is the ratio of propulsion strength to noise. The dimensionless
ratio that compares the product of propulsion strength with the
rod repulsion energy barrier is the penetrability coefficient [8],

Q = LFp

E
. (4)

We employ the density-dependent propulsion force [38],

Fp = F0(v0e
−λm/n + v1), (5)

where F0 is the rod propulsion strength in the absence of
slowing-down, v0 is the weight of the density-dependent
propulsion force, v1 is the weight of the base propulsion force,
m is the number of neighboring beads surrounding the rod, and

λ = λ1

(
rcut

rint

)2

, (6)

where λ1 the base deceleration ratio. For quorum sensing,
λ models the sensitivity to the concentration of signaling
molecules. The interaction radius rint can be interpreted as

range of chemical signaling, determined by diffusion coeffi-
cients and degradation rates of the signaling molecules. We
choose v0 + v1 = 1, such that for systems without neighbors
Fp = F0. The number of neighboring beads, m, is calculated on
a bead basis. For each bead of rod i, we calculate the number
of beads of neighboring rods that are inside an area of the
interaction radius rint. We then sum the number of neighbors
over the number of all beads of rod i to obtain the total number
of neighboring beads.

Although passive rods are apolar, the finite rod thickness
and the rod-rod friction because of the discretization into beads
lead to a polar interaction [8,11]. A reduced propulsion force at
high densities can be expected to enhance the polarity, because
for two rods in antiparallel orientation the density-dependent
deceleration lasts for τantiparallel ≈ L/(2|v‖|), while for two rods
in parallel orientation the density-dependent deceleration lasts
much longer; see Fig. 3.

In the simulations, we employ dimensionless units and
parameters. Lengths are measured in units of the rod length
L, energies in units of kBT , and times in units of τ0 = 1/Dr0,
where Dr0 is the rod rotational diffusion coefficient. We
use interaction radii 1 � rint/rcut � 3, and unless explicitly
stated otherwise, rint/rcut = 1. The global rod density is ρ0 =
N/(Lx × Ly ), where N is the rod number. The system size is
Lx = Ly = 16L. The systems that we have studied consist of
rods with aspect ratios a/b = 4.5 and 9, n = 9 and 18 beads,
respectively. For our studies with rint = rcut, we use packing
fraction φ = 1.4, which corresponds to rod densities ρ0L

2 =
6.4 for systems with a/b = 4.5, and to ρ0L

2 = 12.8 for
systems with a/b = 9. For our studies of different interaction
radii, we use packing fraction φ = 0.8, which corresponds to
a rod density ρ0L

2 = 6.4 for systems with a/b = 9. Unless
explicitly stated, rods with aspect ratio a/b = 9 have densi-
ties of ρ0L

2 = 12.8 We study systems with Péclet numbers
25 � Pe � 400, rod energy barriers 1.5 � E/kBT � 10, base
propulsion weights 0 � v1 � 0.5, and base deceleration ratios
0.05 � λr2

int/r2
cut � 2. For the parameters shown here, we find

penetrability coefficients 0.001 � Q � 0.8, which correspond
to impenetrable rods. Rod positions and orientations are
initialized randomly.

III. PHASE DIAGRAMS AND ALIGNMENT MECHANISMS

A. Phase behavior

Density-dependent reduced propulsion force introduces a
rich variety of dynamical structures, depending on aspect ratio
a/b, deceleration ratio λ, and weight of the base propulsion
force v1. Figure 4 shows a phase diagram and simulation snap-
shots for rods with aspect ratio a/b = 4.5 (corresponding to
n = 9), E/kBT = 5, and Pe = 100. For density-independent
propulsion force (λ = 0 or v1 = 1), and for systems with small
λ or large v1, the rods form a clustered nematic phase (CN).
For intermediate and large λ and intermediate and small v1, the
rods form clusters with domains (CD). Finally, for intermediate
and small v1 and small λ, the rods form round clusters (RC).

Rods in the CN phase form small motile polar clusters,
but the overall rod order is nematic. Systems with λ > 0 and
v1 < 1 (CN II) show larger clusters than systems with λ = 0 or
v1 = 1 (CN I). In the CD phase, clusters are composed of large
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FIG. 4. Phase diagram for various λ and v1, and simulation snapshots of SPR systems with aspect ratio a/b = 4.5 (n = 9), ρL2 = 6.4,
E/kBT = 5 and Pe = 100. (a) Clustered nematic phase with constant propulsion (CN I), i.e., λ = 0. (b) Clustered nematic phase with density-
dependent slowing down (CN II), system with λ = 2 and v1 = 0.5. (c) Clusters-with-domains phase (CD I), system with λ = 2 and v1 = 0.05.
(d) Round clusters phase (RC), system with λ = 0.1 and v1 = 0. (e) Clusters-with-domains phase with perpendicular rods at cluster borders
(CD II), system with λ = 1 and v1 = 0. (f) Color wheel that indicates rod orientation. The gray regions in the phase diagram indicate systems
with density-independent propulsion with λ = 0 or v1 = 1. In these regions the rods form a clustered nematic phase (CN). In the phase diagram,
horizontal rectangles represent the clustered nematic phase (CN), vertical rectangles represent round clusters (RC), and circles represent clusters
with domains (CD). The points are colored according to the value of the polar order parameter �, see the legend. Note that the base propulsion
weight v1 at the vertical axis increases from top to bottom. The penetrability coefficients range from Q = 0.2 for density-independent systems
(λ = 0 or v1 = 1) to Q = 0.001 for systems with λ = 2 and v1 = 0. Selected movies are presented in the Supplemental Material [39].

polar domains and span the entire system (CD I). For systems
with v1 = 0 (CD II), rods both in bulk and at the borders are
oriented perpendicular to the cluster borders. In the RC phase,
we observe round clusters with small polar domains. Here, the
rods at the cluster borders are perpendicularly oriented with
respect to the borders.

Figure 5 shows a phase diagram and simulation snapshots
for rods with aspect ratio a/b = 9 (corresponding to n =
18), E/kBT = 5 and Pe = 400 [42]. For density-independent
propulsion force (λ = 0 or v1 = 1), and for small λ or large v1

the rods form a clustered nematic phase (CN). For small and
intermediate v1, the rods form polar clusters (PC). For small λ

and intermediate and small v1, the rods form polar hedgehog
clusters (PHC). Finally, for v1 = 0, the rods form asters (AS).

In the CN phase, rods form motile polar clusters but
the overall orientation is nematic as for short-rod systems.
Similarly, systems with small and finite λ (CN II) show larger
clusters than systems with λ = 0 or v1 = 1 (CN I). In the PC
phase, systems with small v1 (PC I) have perpendicular rods
at the cluster borders. The perpendicularity of the rods at the
borders increases the cluster stability (PC II). In the PHC phase,

we find large polar worm-like clusters with perpendicular rods
at the borders. In the AS phase, rods form round clusters with
large polar domains. Rods both within the cluster and at the
border are perpendicular with respect to the aster border.

For both aspect ratios, the polar order parameter provides
a good indication for the phase boundaries in Figs. 4 and 5.
Enhanced polar order, enhanced cluster formation, perpen-
dicularity at cluster borders, and nearly empty low-density
regions induced by a density-dependent reduced propulsion are
observed both for short and long rods. However, the differences
in parameter space are more prominent for long rods that form
more ordered structures than short rods. This is related to
the isotropic and nematic order in lyotropic liquid crystalline
systems, where a minimum aspect ratio of about 5 is required
for nematic order to appear [43].

Summarizing the discussion of the phase diagrams, density-
dependent self-propulsion enhances local polar alignment;
see Sec. III B. The alignment and cluster formation observed
for classical SPRs (λ = 0 or v1 = 1) are caused by the rod-
rod repulsive interaction, i.e., the rod energy barrier E. For
λ > 0, the density-dependent reduced propulsion allows the
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FIG. 5. Snapshots and phase diagram of SPR systems with aspect ratio a/b = 9 (n = 18), ρ0L
2 = 12.8, E/kBT = 5, and Pe = 400. (a)

Clustered nematic phase (CN I), system with constant propulsion, i.e., λ = 0 or v1 = 1. (b) Clustered nematic phase (CN II), system with
λ = 2 and v1 = 0.5. (c) Polar clusters phase (PC I), system with λ = 2 and v1 = 0.25. (d) Polar hedgehog clusters phase (PHC), system with
λ = 0.4 and v1 = 0.09. (e) Polar clusters with perpendicular rods at the borders phase (PC II), system with λ = 2 and v1 = 0.09. (f) Asters
phase (AS), system with λ = 0.4 and v1 = 0. The gray regions in the phase diagram indicate systems with density-independent propulsion
with λ = 0 or v1 = 1. In these regions the rods form a clustered nematic phase (CN). In the phase diagram squares represent clustered nematic
rods (CN), triangles represent polar hedgehog clusters (PHC), circles represent polar clusters (PC), and diamonds represent asters (AS). The
points are colored according to the value of the polar order parameter �, see the legend. Note that the base propulsion weight v1 at the vertical
axis increases from top to bottom. The penetrability coefficients range from Q = 0.8 for density-independent systems (λ = 0 or v1 = 1) to
Q = 0.04 for systems with λ = 2 and v1 = 0. Selected movies are presented in the Supplemental Material [39].

steric interaction to act longer, which enhances rod alignment.
Furthermore, a decreased propulsion favours rod trapping
because a rod that comes close to a cluster moves more slowly;
see Sec. III C. This decreases the probability of a rod to exit
the cluster and lead to the formation of a loosely-packed
CD phase. Finally, the reduced propulsion at high densities
effectively increases the friction as rods interact, which induces
perpendicularity of rods at the cluster borders with increasing
slowing-down. A more detailed discussion of this mechanism
is provided in Sec. III D. For systems with v1 = 0, rods in
clusters become effectively passive. In these systems, we
observe asters, as well as clusters with domains where not
only rods at borders, but all rods are oriented perpendicularly
to the cluster borders.

B. Density-dependent propulsion
enhances polarity

To quantify the increased rod alignment and polarity caused
by the density-dependent self-propulsion we calculate the

nematic order parameter,

S =
〈

N∑
i �=j

cos (2(θi − θj ))

N (N − 1)

〉
, (7)

and the polar order parameter,

� =
〈

N∑
i �=j

cos (θi − θj )

N (N − 1)

〉
. (8)

The averages are taken over square cells of size 4L2. Here,
S = 0 corresponds to an isotropic state, � = 0 and S = 1 to a
nematic state, and � = 1 and S = 1 to a polar state [44].

The dependence of the polar order parameter �/�0 on the
density-dependent reduced propulsion is similar for rods with
aspect ratios a/b = 4.5 and 9 [44]. We observe an increase
in the polar order parameter with decreasing v1 and with
decreasing λ; see Fig. 6. The polar order parameter can be used
as one criterion to determine phase boundaries and is therefore
also represented by the color of the symbols in Figs. 4 and 5.
For λ � 1, � increases with increasing λ, while for λ � 1, the
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FIG. 6. Polar order parameter � versus deceleration ratio λ for various values of v1. (a) Systems with aspect ratio a/b = 4.5 (n = 9),
ρ0L

2 = 6.4, E/kBT = 5, and Pe = 100. (b) Systems with aspect ratio a/b = 9 (n = 18), ρ0L
2 = 12.8, E/kBT = 5, and Pe = 400. The polar

order parameter for the respective density-independent propulsion force systems is �0 = 0.074 for short rods, and �0 = 0.168 for long rods.

polar order parameter remains roughly constant; see Fig. 6(a).
For systems with λ � 1 and parallel rods 〈m〉/n ≈ 2.5, such
that v0 exp(−λm) ≈ 0 and Fp ≈ v1F0. All systems show qual-
itatively similar behavior independent of the value of v1, except
for 18-bead rods in the CN phase with λ > 0 (CN II, v1 = 0.5);
see Fig. 6(b). The sharp decrease in polar order compared with
systems for smaller values of v1 results from the formation
of a lane phase that is also found for constant-propulsion
rods.

C. Density-dependent propulsion enhances clustering

We quantify the effect of density-dependent propulsion on
clustering using rod-density distributions P (ρ) and cluster size
distributions �(M ); see Figs. 7 and 8. The local rod densities
are calculated using Voronoi tessellation as the inverse of the
area of the Voronoi cells, where the centers-of-mass of the
rods are used as the tessellation seeds. Because many of our
systems have very few rods in the low-density regions, the
density distributions are, generally, single-peaked functions;
see Fig. 7 [45]. For the cluster-size distributions, we consider
two rods to be in the same cluster if their nearest distance is less
than 2rcut and if their orientations differ by less than 15 ◦ [8].

Rods in the CN phase form clusters of different sizes without
a clear spatial separation of high-density and low-density
regions; see Fig. 4(a). Therefore, P (ρ) shows a single but
broad peak that is positively skewed; see Fig. 7(a). The peak
at ρ/ρ0 = 1.05 is only slightly above the average density
ρ0. The density distributions for the CD phase, however, are
significantly narrower. While the peak position only weakly
depends on v1, the peak height increases with decreasing v1.
For these systems with small v1, the probability to find densities
ρ/ρ0 < 0.5 is very small, ρ/ρ0 = 0.5 corresponds to the rod
density obtained from the Voronoi cells for rods at the cluster
borders. A strong density dependence of the reduced propul-
sion thus reduces the probability for rods to leave the cluster. In
particular, rod perpendicularity at the borders leads to the for-
mation of clusters with very sharp interfaces; compare Figs. 4
and 5.

For systems with v1 = 0, the height of the peak of the
density distribution does not increase monotonically with
increasing λ; see Fig. 7(b). For the RC system with λ = 0.1, the
height of the peak is lower than for the CN phase with λ = 0 or
v1 = 1. For λ � 0.5, the peak height increases with increasing
λ and is higher than for the CN phase. The density distribution
for the RC phase with λ = 0.1 is bimodal, where the first
peak at ρ/ρ0 ≈ 0.25 corresponds to rods in the low-density
region. Here, the low-density region is more populated than in
the other phases; see Fig. 4. The second peak of the density
distribution at ρ/ρ2

0 ≈ 1.4 corresponds to rods in the cluster.
For the RC system with λ = 0.5, the system is at the border
of the RC and CD phases. Therefore P (ρ) has a single broad
peak at ρ/ρ0 ≈ 1.2, where rods in the high-density region are
more loosely packed than in the RC phase. For the CD system
with λ = 2, the peak is approximately at the same position as
for the density-independent system, ρ/ρ0 ≈ 1.1. For systems
with λ � 0.5, we find very sharp interfaces and P (ρ/ρ0 � 0.5)
is very small, as discussed above. Density distributions for
rods with aspect ratio a/b = 9 are shown in the Supplemental
Material [39]. The position of the peak for density distributions
for long rods is shifted to ρ/ρ0 ≈ 1.2.

Cluster-size distributions for rods with 9 beads are shown
in Fig. 8(a). Although the distributions do not always show
true power laws for several orders of magnitude, they can be
characterized by effective power laws �(M ) ∝ Mβ in the limit
of small cluster sizes, M � 15. As the density-dependence
of the reduced propulsion becomes more pronounced, the
number of small clusters decreases and the rods form “loose”
system-spanning clusters as λ increases and v1 decreases.
The cluster size distributions for the CN system with λ = 0
or v1 = 1 and for the CD system with λ = 2, v1 = 0.09 are
very similar. However, �(M ) drastically changes for the CD
system with λ = 2, v1 = 0. For systems with perpendicular
rods at the border, �(M ) is smaller and decreases faster
with increasing M for small cluster sizes. All cluster-size
distributions show a peak at M 
 1000, which corresponds
to system-spanning clusters that consist of a large number
of rods.

022605-6



COLLECTIVE BEHAVIOR OF SELF-PROPELLED RODS … PHYSICAL REVIEW E 98, 022605 (2018)

FIG. 7. Density distribution P (ρ ) versus rod density ρ for systems with aspect ratio a/b = 4.5 (n = 9), ρ0L
2 = 6.4, E/kBT = 5, Pe = 100.

Clustered nematic phase (CN), clusters-with-domains phase (CD), round clusters (RC), and the values of λ and v1 are given in the legend. (a)
Systems with λ = 2, (b) systems with v1 = 0.

The exponent β of the cluster-size distribution decreases
with increasing λ and decreasing v1; see Fig. 8(b) [46]. β

decays slowly with v1 for v1 > 0.09, which corresponds to
the CN and CD phases. However, β decreases sharply with
increasing v1 for v1 � 0.09, which corresponds to CD and RC
phases. The decrease of β with decreasing v1 is caused by the
perpendicularly oriented rods at the cluster borders. Because
of the hindered rotational diffusion of SPRs that newly join
clusters, the strong depletion of rods in the low-density region
disfavors the formation of many small clusters.

D. Density-dependent propulsion induces perpendicularity

For systems with density-independent propulsion (λ = 0
or v1 = 1), the rods form elongated clusters. In contrast, for
systems with density-dependent reduced propulsion (λ > 0),
we find perpendicular rods at the borders of the clusters: RC,
CD with perpendicular rods at the borders, PHC, PC with
perpendicular rods at the borders, and AS phases; see Figs. 4

and 5. For rods with small v1, the propulsion force strongly
decreases as soon as a rod comes in contact with a cluster.
Therefore, rods do not easily slide along cluster borders and
alignment due to the propulsion-induced torque is also strongly
decreased. This enhances the probability for a rod to meet
another rod that slides along the border in opposite orientation.
Density-dependent reduced propulsion thus induces jamming
between rods. In addition, jammed structures easily trap other
rods that newly join a cluster, giving rise to small hedgehoglike
clusters with perpendicular rods at the borders. Once the cluster
border is filled with rods, the rods align perpendicularly rather
than forming separate hedgehoglike aggregates, to maximize
packing. A figure detailing the formation PHC, PC phases
with perpendicular rods, and AS phases can be found in the
Supplemental Material [39].

For polar hedgehog clusters and polar clusters with perpen-
dicular rods at the borders (v1 > 0), the rods in the center of
the cluster are still propelled, which leads to rod alignment
due to the constant-propulsion SPR alignment mechanism.

FIG. 8. (a) Cluster size distribution �(M ) versus cluster size M for systems with aspect ratio a/b = 4.5 (n = 9), ρ0L
2 = 6.4, E/kBT = 5,

Pe = 100. Clustered nematic phase (CN), clusters-with-domains phase (CD), and the values of λ and v1 are given in the legend. (b) Exponents
β of power-law fits to the cluster distributions for small M versus the weight of the base propulsion, v1, for various values of λ. For the
density-independent system (λ = 0 or v1 = 1), β = −1.91.
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FIG. 9. Rod orientation autocorrelation function Cθ versus lag time t . Clustered nematic phase (CN), clusters-with-domains phase (CD),
round clusters (RC), polar hedgehog clusters (PHC), polar clusters (PC), asters (AS), and the values of λ and v1 are given in the legend. (a)
Systems with aspect ratio a/b = 4.5 (n = 9), ρ0L

2 = 6.4, E/kBT = 5, Pe = 100, for various values of λ and v1. (b) Systems with aspect ratio
a/b = 9 (n = 18), ρ0L

2 = 12.8, E/kBT = 5, Pe = 400, for various values of λ and v1.

Therefore, systems with v1 > 0 are overall polar. For systems
with v1 = 0 and sufficiently high λ, the rods become passive
as soon as they collide with other rods. Therefore, the local
structure in the interior of the cluster is determined only by
steric alignment and optimal packing throughout the cluster.
There is no propulsion-induced alignment, all rods are perpen-
dicular with respect to the borders, forming AS and CD phases
that are typically not observed for constant-propulsion SPRs.
RC phases have earlier been reported also for very rough SPRs
that interlock [19].

E. Rod dynamics

So far we have only described the structure of clusters
and interfaces. To study rod dynamics in steady state more
systematically, we calculate the rod orientation autocorrelation
function

Cθ (t ) = 〈li (t ′ + t ) · li (t ′)〉, (9)

where li (t ′) is the orientation vector of rod i at time t ′, and t

is the lag time. For rods with aspect ratio a/b = 4.5, the rod
orientation autocorrelation function decreases exponentially,
Cθ = e−t/τ , where τ is the relaxation time; see Fig. 9(a). Cθ

decorrelates more slowly as λ increases and v1 decreases. The
base propulsion weight v1 has a stronger effect on the reduced
propulsion of the autocorrelation function than λ, compare the
dynamics for systems with v1 = 0.05 and for systems with
v1 = 0. For systems of rods with aspect ratio a/b = 9, Cθ is
not always an exponentially decreasing function; see Fig. 9(b).
The functional form of the Cθ strongly depends on the structure
formed by the rods. For the CN phase with λ = 0 or v1 = 1,
the rod orientation quickly becomes uncorrelated. For systems
with density-dependent reduced propulsion, Cθ decorrelates
more slowly. Density-dependent reduced propulsion slows
down rod dynamics, and thus increases the autocorrelation time
for rod orientation.

For rods with aspect ratio a/b = 9, Cθ (t ) does not always
decrease exponentially. In PC systems with perpendicular rods
at the borders, the system with λ = 2 and v1 = 0.05, the
perpendicular rods at the border stabilize the polar clusters
and Cθ roughly remains constant. For the CN system with
λ = 2, v1 = 0.5, Cθ decorrelates slowly. For the PHC system
with λ = 0.2 and v1 = 0.05, Cθ decorrelates quickly to a finite
value, Cθ (t � τ0) � 0.4. Polar hedgehog clusters are dynamic
at short times, rods can wiggle, but the perpendicular rods at
the cluster borders stabilize the overall orientation. For the AS
system with λ = 0.2, Cθ shows three linear regimes. A first
regime with a fast decay, corresponding to single-rod dynamics
in the dense region; a second slow decay, corresponding to
rod collective behavior inside the aster; a third fast decay,

FIG. 10. Rod orientation autocorrelation times τ versus the
weight of the base propulsion v1. Systems with aspect ratio a/b =
4.5 (n = 9),ρ0L

2 = 6.4,E/kBT = 5, Pe = 100, for various values of
λ. For the density-independent system (λ = 0 or v1 = 1), τ = 2.21τ0.
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FIG. 11. Phase diagram for various rint and λ1, and simulation snapshots of SPR systems with aspect ratio a/b = 9, ρ0L
2 = 6.4, E/kBT = 5,

Pe = 400, and v1 = 0. (a) Asters (AS), system with λ1 = 0.1 and rint/rcut = 1. (b) Rotating aster, system with λ1 = 0.1 and rint/rcut = 1.5.
(c) Streaming-jet aster, system with λ1 = 0.2 and rint/rcut = 2. (d) Polar hedgehog clusters (PHC), system with λ1 = 0.1 and rint/rcut = 3. (e)
Clusters with domains (CD), system with λ1 = 1 and rint/rcut = 2.5. (f) Clusters with domains with homogeneous density, system with λ1 = 2
and rint/rcut = 3. In the phase diagram, triangles represent polar hedgehog clusters (PHC), diamonds represent asters (AS), and circles represent
clusters with domains (CD). Selected movies are presented in the Supplemental Material [39].

corresponding to long-time behavior of single rods that exit
the aster. For the AS system with λ = 2 and v1 = 0, very few
rods escape the asters. This leads to two decay regimes: a first
quick decay, corresponding to single-rod dynamics in the dense
region, and a second slow decay, corresponding to collective
rod dynamics inside the aster.

For rods with aspect ratio a/b = 4.5, the relaxation time
τ increases with increasing λ and with decreasing v1; see
Fig. 10. For systems with λ � 0.2, τ decreases at a constant
rate because the rod moves faster through an RC or a CN
phase with increasing v1. Rod dynamics in both phases is
therefore very similar. For systems with λ > 0.2 we find
two different decays. For v1 � 0.09, τ decreases sharply,
whereas for v1 > 0.09, τ decreases slowly. The highly ordered
CD phase with perpendicular rods at the border for small
v1 transitions to a considerably more disordered CN phase
for large v1. Therefore, the rotational autocorrelation time
decreases sharply at the phase boundary.

IV. ROLE OF THE “QUORUM-SENSING”
INTERACTION RADIUS

An important feature of the quorum sensing mechanism is
that the range of this interaction can be chosen independently
from the steric repulsion range. This strongly affects the
emerging structures. As the range of the quorum sensing
interaction increases, the rods become more homogeneously

distributed and rod perpendicularity decreases. Simulation
results are shown in Fig. 11, which characterizes dynamics
and collective behavior of rods with a/b = 9, ρ0L

2 = 6.4, and
v1 = 0, as a function of interaction radius rint and deceleration
ratio λ1. For small λ1, with increasing rint asters first become
more dynamic, intermittently ejecting streams of clustered
rods, and finally polar hedgehog clusters develop. As λ1

increases, rod dynamics slows down and the systems become
more static. For large rint and λ1, we find a less dense CD
phase. A particular case is the homogeneous-density system
with λ1 = 2 and rint/rcut = 3. The λ1-rint cut through the
parameter space systematically characterizes the interplay of
rod shape and chemical signaling. For the small interaction
radius discussed in Sec. III, shape plays the major role for
determining the structure. With increasing rint and increasing
λ1, chemical signaling becomes dominant. Static and highly
symmetric round asters are stable when the steric interactions
dominate. Systems with bacteria or phoretic particles that sense
each other before they physically touch are thus less dense
and less ordered. Interestingly, we find slightly elongated,
circling asters close to the border between the AS and the PHC
phase, e.g., for λ1 � 0.1 and rint � 2. These dynamic asters
are held together by a line tension induced by perpendicular
rods at the aster border that exert an inward force, similar
to molecules at interfaces in fluid-gas systems. Stresses are
relaxed via intermittent jets of rods, similar to the mechanism
in Ref. [47]. Figure 12 shows the dependence of the position
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FIG. 12. Position of the density distribution peak, ρpeak, versus
quorum sensing interaction radius rint for systems with aspect ratio
a/b = 9 (n = 18), ρ0L

2 = 6.4, E/kBT = 5, Pe = 400, for various
values of λ1. Triangles represent a polar-hedgehog-cluster phase
(PHC), diamonds an asters phase (AS), and circles a clusters-with-
domains phase (CD)

of the peak in the density distribution, ρpeak, on the quorum
sensing interaction radius rint. The peak position shifts to
lower densities with both increasing rint and increasing λ1.
For constant λ1, the AS phase is denser than the PHC or
the CD phase that occur at higher interaction radii. For large
interaction radii, the SPRs already slow down before they
touch. Therefore, the rods are effectively passive and motility-
induced alignment becomes irrelevant. For rint/rcut � 2.5, the
rods are homogeneously distributed with density ρpeak ≈ ρ0,
see the simulation snapshot for the homogeneous CD phase in
Fig. 11.

V. SUMMARY AND CONCLUSION

We have studied SPRs with density-dependent propulsion
in quasi-two-dimensional systems with periodic boundary
conditions. The rods interact via a capped repulsive potential,
which mimics self-avoiding rods in a thin, three-dimensional
slab, such that the rods have a finite probability to cross each
other. We find a very rich collective behavior including several
phases that are not observed for constant propulsion. In general,
reduced propulsion at high rod densities enhances polar order
and cluster formation, and induces perpendicular orientation
of rods at the cluster borders.

Rod-density distributions are an important observable to
characterize phases and phase behavior of SPR systems. For
constant-propulsion SPRs, phase separation is observed be-
cause of excluded volume interactions [38,48]. The rod-density
distributions show two well-separated peaks, with the first peak
representing the low-density region and the second peak the
high-density region, respectively. On the contrary, the rod-
density distributions for systems with quorum sensing—using
Voronoi tessellation to calculate local rod densities—often

show only one peak that corresponds to the high-density region.
Low-density regions are almost devoid of rods due to the
perpendicular orientation of the rods at the boundaries. We thus
find a positive feedback between density-dependent reduced
propulsion and cluster growth.

Some previous studies have investigated various aspects
of enhanced cluster formation due to MIPS in self-propelled
spheres and discs [37], as well as for systems that combine
point particles that interact via the Vicsek model and quo-
rum sensing [38,48]. SPPs with Vicsek-type interactions and
density-dependent reduced propulsion show similar dynamic
phases to the ones observed in our systems: stripy, aster,
moving clumps, and lane phases. However, the models studied
in Refs. [38,48] do not allow a distinction between volume
exclusion and quorum sensing as mechanisms of slowing
down. Neither perpendicularity of the rod orientation at borders
nor very regular asters are observed, therefore low-density
regions in systems with point particles are more populated than
for our model.

Density-dependent reduced propulsion introduces perpen-
dicularity of the rods at the cluster borders. If the rods in the
center of a cluster are still propelled, polar clusters form with
perpendicular rods at the borders. If the propulsion force of the
majority of rods in the cluster vanishes, stripelike and asterlike
clusters form, where all rods are oriented perpendicularly to the
border. Increasing the interaction range used to calculate the
density-dependent propulsion force, we can transition from a
system where only nearest neighbors are considered and steric
interaction are important to a system where the SPRs only
interact via quorum sensing. The highest peak of the density
distribution shifts to lower density with increasing interaction
radius because the SPRs slow down before they touch. In
particular for small λ, increased interaction radius implies
that the asters become more dynamic and finally disintegrate
into polar hedgehog clusters. The dynamic asters rotate and
intermittently eject streams of rod clusters. A somewhat similar
behavior has been observed for SPRs with constant propulsion
in two dimensions, where very large asterlike clusters eject
streams of rods to relieve stresses [47].

In nature, an increased propulsion velocity with increased
density has been observed in Bacillus subtilis populations [49].
This mechanism has been found in computer simulations with
Vicsek interactions to lead to band formation [50,51]. In the
future, we therefore plan to employ our model to study the
collective behavior of SPRs with density-dependent enhanced
propulsion force.
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