001     852738
005     20240610115332.0
024 7 _ |a 10.1021/acsanm.8b00357
|2 doi
024 7 _ |a WOS:000461400900006
|2 WOS
024 7 _ |a altmetric:45954589
|2 altmetric
037 _ _ |a FZJ-2018-05610
082 _ _ |a 540
100 1 _ |a Barbul, Alexander
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nanoparticle-Decorated Erythrocytes Reveal That Particle Size Controls the Extent of Adsorption, Cell Shape, and Cell Deformability
260 _ _ |a Washington, DC
|c 2018
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538401591_358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Unraveling the interaction of nanoparticles with living cells is fundamental for nanomedicine and nanotoxicology. Erythrocytes are abundant and serve as model cells with well-characterized properties. Quantitative experiments addressing the binding of carboxylated polystyrene nanoparticles to human erythrocytes reveal saturated adsorption with only sparse (∼2%) coverage of the cell membrane by partial-wrapped nanoparticles. The independence of the adsorbed area on particle size suggests a restricted number of adhesive sites on the membrane. Using a continuum membrane model combined with nanoparticle–membrane adhesion mediated by receptor–ligand bonds, we predict high bond energies and low receptor densities for partial-wrapped particles. With the help of computer simulations, we determine sets of receptor densities, receptor diffusion coefficients, minimal numbers of bound receptors required for multivalent binding, and maximal possible numbers of bound receptors that reproduce the experimental nanoparticle adsorption data. Nanoparticle decoration of erythrocytes leads to shape transformations and reduced cell deformability. We quantitatively characterize and interpret erythrocyte shape and deformability changes. The shape changes also offer insights into the modification of the mechanical properties of other mammalian cell membranes by adhered nanoparticles. A potential application of nanoparticle-loaded erythrocytes is retarded targeted drug delivery with a long lifetime of the particles in the blood circulation.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Singh, Karandeep
|0 P:(DE-Juel1)164359
|b 1
|u fzj
700 1 _ |a Horev−Azaria, Limor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dasgupta, Sabyasachi
|0 P:(DE-Juel1)142341
|b 3
700 1 _ |a Auth, Thorsten
|0 P:(DE-Juel1)130514
|b 4
700 1 _ |a Korenstein, Rafi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acsanm.8b00357
|g Vol. 1, no. 8, p. 3785 - 3799
|0 PERI:(DE-600)2916552-0
|n 8
|p 3785 - 3799
|t ACS applied nano materials
|v 1
|y 2018
|x 2574-0970
856 4 _ |u https://juser.fz-juelich.de/record/852738/files/acsanm.8b00357.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/852738/files/acsanm.8b00357.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:852738
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130514
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21