000852785 001__ 852785
000852785 005__ 20210129235211.0
000852785 0247_ $$2doi$$a10.1007/978-3-319-42913-7_74-1
000852785 037__ $$aFZJ-2018-05619
000852785 1001_ $$0P:(DE-HGF)0$$aAndreoni, Wanda$$b0$$eEditor
000852785 245__ $$aSpin Excitations in Solid from Many-Body Perturbation Theory
000852785 260__ $$aCham$$bSpringer International Publishing$$c2018
000852785 29510 $$aHandbook of Materials Modeling / Andreoni, Wanda (Editor) ; Cham : Springer International Publishing, 2018, Chapter 74-1 ; ISBN: 978-3-319-42913-7 ; doi:10.1007/978-3-319-42913-7
000852785 300__ $$a1-39
000852785 3367_ $$2ORCID$$aBOOK_CHAPTER
000852785 3367_ $$07$$2EndNote$$aBook Section
000852785 3367_ $$2DRIVER$$abookPart
000852785 3367_ $$2BibTeX$$aINBOOK
000852785 3367_ $$2DataCite$$aOutput Types/Book chapter
000852785 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1549268693_9016
000852785 520__ $$aElectronic spin excitations are low-energy excitations that influence the properties of magnetic materials substantially. Two types of spin excitations can be identified, single-particle Stoner excitations and collective spin-wave excitations. They can be treated on the same footing within many-body perturbation theory. In this theory, the collective spin excitations arise from the correlated motion of electron-hole pairs with opposite spins. We present the theory in detail and discuss several aspects of an implementation within the full-potential linearized augmented plane-wave method. The pair propagation is described by the transverse magnetic susceptibility, which we calculate from first principles employing the ladder approximation for the T matrix. The four-point T matrix is represented in a basis of Wannier functions. By using an auxiliary Wannier set with suitable Bloch character, the magnetic response function can be evaluated for arbitrary k points, allowing fine details of the spin-wave spectra to be studied. The energy of the acoustic spin-wave branch should vanish in the limit k →0, which is a manifestation of the Goldstone theorem. However, this condition is often violated in the calculated acoustic magnon dispersion, which can partly be traced back to the choice of the Green function. In fact, the numerical gap error is considerably reduced when a renormalized Green function is used. As an alternative simple correction scheme, we suggest an adjustment of the Kohn-Sham exchange splitting. We present spin excitation spectra for the elementary ferromagnets Fe, Co, and Ni as illustrative examples and compare to model calculations of the homogeneous electron gas.
000852785 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000852785 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000852785 588__ $$aDataset connected to CrossRef Book
000852785 7001_ $$0P:(DE-HGF)0$$aYip, Sidney$$b1$$eEditor
000852785 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b2$$eCorresponding author$$ufzj
000852785 7001_ $$0P:(DE-Juel1)130855$$aMüller, Mathias C. T. D.$$b3$$ufzj
000852785 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000852785 773__ $$a10.1007/978-3-319-42913-7_74-1
000852785 8564_ $$uhttps://juser.fz-juelich.de/record/852785/files/Friedrich2018_ReferenceWorkEntry_SpinExcitationsInSolidFromMany.pdf$$yRestricted
000852785 8564_ $$uhttps://juser.fz-juelich.de/record/852785/files/Friedrich2018_ReferenceWorkEntry_SpinExcitationsInSolidFromMany.pdf?subformat=pdfa$$xpdfa$$yRestricted
000852785 909CO $$ooai:juser.fz-juelich.de:852785$$pVDB
000852785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b2$$kFZJ
000852785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130855$$aForschungszentrum Jülich$$b3$$kFZJ
000852785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
000852785 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000852785 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000852785 9141_ $$y2018
000852785 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000852785 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000852785 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000852785 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000852785 980__ $$acontb
000852785 980__ $$aVDB
000852785 980__ $$aI:(DE-Juel1)IAS-1-20090406
000852785 980__ $$aI:(DE-Juel1)PGI-1-20110106
000852785 980__ $$aI:(DE-82)080009_20140620
000852785 980__ $$aI:(DE-82)080012_20140620
000852785 980__ $$aUNRESTRICTED