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Engineering chiral and topological orbital
magnetism of domain walls and skyrmions
Fabian R. Lux 1,2, Frank Freimuth 1, Stefan Blügel 1 & Yuriy Mokrousov 1,3

Electrons that are slowly moving through chiral magnetic textures can effectively be

described as if they were influenced by electromagnetic fields emerging from the real-space

topology. This adiabatic viewpoint has been very successful in predicting physical properties

of chiral magnets. Here, based on a rigorous quantum-mechanical approach, we unravel the

emergence of chiral and topological orbital magnetism in one- and two-dimensional spin

systems. We uncover that the quantized orbital magnetism in the adiabatic limit can be

understood as a Landau-Peierls response to the emergent magnetic field. Our central result is

that the spin–orbit interaction in interfacial skyrmions and domain walls can be used to tune

the orbital magnetism over orders of magnitude by merging the real-space topology with the

topology in reciprocal space. Our findings point out the route to experimental engineering of

orbital properties of chiral spin systems, thereby paving the way to the field of chiral

orbitronics.
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T
he field of magnetism is witnessing a recent spark of
interest in Berry phase and transport effects, which origi-
nate in non-collinear magnetism and spin chirality1–3. On

the one hand, the recent outstanding observations made in this
field is the generation of large current-induced Hall effects in
strongly frustrated metallic antiferromagnets4 and the topological
Hall effect (THE) in skyrmions2,5. On the other hand, the physics
of the fundamental phenomenon of orbital magnetism has been
experiencing a true revival, which can be attributed to the advent
of Berry phase concepts in condensed matter6,7. The Berry phase
origin of the orbital magnetization (OM) and its close relation to
the Hall effect makes us believe that non-collinear spin systems
can reveal a rich landscape of orbital magnetism relying on spin
chirality rather than spin–orbit interaction (SOI)8–11. The cor-
responding phenomenon of topological orbital magnetization
(TOM)8–11 is rooted in the same physical mechanism that drives
the emergence of non-trivial transport properties such as the
THE in chiral skyrmions or the anomalous Hall effect in chiral
antiferromagnets12–14.

The promises of topological contribution to the orbital mag-
netization are seemingly very high, since it offers new prospects in
influencing and detecting the chirality of the underlying spin
texture by addressing the orbital degree of freedom, which is the
central paradigm in the advancing field of orbitronics15. And
while the emergence of topological orbital magnetism in several
nm-scale chiral systems has been shown from first principles and
tight-binding calculations8,9, our understanding of this novel
phenomenon is basically absent. In particular, this concerns its
conceptually clear definition as well as our ability to tailor the
properties of this effect in complex interfacial chiral systems,
which often exhibit strong spin–orbit interaction. These are the
two central questions we address in this work.

As has been shown in the case of skyrmions, the variety of
topological phenomena, which arise intrinsically from the non-
trivial magnetization configuration bnðx; yÞ can be attributed to an
“emergent” magnetic field Bz

eff
1. The occurrence of this field is

connected to the gauge-invariant Berry phase the electron’s
wavefunction acquires when traversing the texture16–18 (see Fig. 1
for an intuitive illustration). In the adiabatic limit, this phase can
be attributed to the effect of Bz

eff , explicitly given by the expression

Bz
eff ¼ ±

�h

2e
bn � ∂bn

∂x
´

∂bn
∂y

� �
; ð1Þ

where the sign depends on the spin of the electron. When inte-
grated over an isolated skyrmion, the total flux of Bz

eff is quantized
to integer multiples of 2Φ0, where Φ0 ≈ 2 × 103 T nm2 is the
magnetic flux quantum, while the integer prefactor can be iden-
tified with the topological charge of a skyrmion, Nsk, essentially
counting the number of times the spin evolves around the unit
sphere when traced along a path enclosing the skyrmion center.

Formally, the non-collinear system bnðx; yÞ can, therefore, be
portrayed as a collinear one, albeit at the price of introducing the
magnetic field Bz

eff into the Schrödinger equation. Just as an
ordinary magnetic field would, the emergent magnetic field in
chiral systems couples directly to the orbital degree of freedom
and provides an intuitive mechanism for the THE of skyrmions19

as well as a possible explanation for the emergence of TOM.
Here, we uncover the emergence of distinct contributions to

the orbital magnetization in slowly-varying chiral textures by
following the intuition that such contributions should acquire the
natural form

Morbital / χomsBeff ; ð2Þ

where χoms is the orbital magnetic susceptibility of the electronic
system20,21. Indeed, we demonstrate that in the limit of vanishing

SOI the topological orbital magnetization can be expressed in this
way. We also discover that in the limit of small, yet non-zero SOI
there is a novel chiral contribution to the orbital magnetization
described by (2) with the properly defined chiral emergent
field, which can be finite already for one-dimensional systems
(see Fig. 1a).

Moreover, by exploiting a rigorous semiclassical framework, we
demonstrate that in interfacial chiral systems with finite SOI, the
orbital magnetism can be tuned over orders of magnitude by
varying the SOI strength within the range of experimentally
observed values. We also underpin the crucial role that the
topology of the local electronic structure of textures has in
shaping the properties of orbital magnetism in chiral magnets.
We discuss the bright avenues that our findings open, paving the
way to the experimental observation of this phenomenon and to
the exploitation of the orbital degree of freedom in chiral systems
for the purposes of chiral orbitronics.

Results
The semiclassical formalism we are referring to in our work is
based on the Green’s function perturbation theory as presented
by Onoda et al.22. We put the orbital magnetism of chiral systems
on a firm quantum-mechanical ground, formulating a rigorous
theory for the emergence of orbital magnetism in non-collinear
systems. The motivation for this approach is twofold. First of all,
the expression for Beff arises from the adiabatic limit19,23, a
regime where semiclassical approaches have been successfully
applied in order to investigate Berry phase physics7. Secondly,
this certain type of gradient expansion24 provides a systematic
guide through higher orders of perturbation theory where stan-
dard methods would be cumbersome.

It is based on an approximation to the single-particle Green’s
function and allows us to trace the orders of perturbation theory
for chiral magnetic textures, distinguishing corrections to the out-
of-plane orbital magnetization25 Mom ¼ �h1MðbnÞez of a locally
ferromagnetic system, which appear as powers of the derivatives
of the magnetization with respect to real-space coordinates:

Mcom ¼ �h2Mα
i ðbnÞ ∂inαð Þez ð3Þ

Mtom ¼ �h3M
αβ
ij ðbnÞ ∂inαð Þ ∂jnβ

� �
ez; ð4Þ

where ∂i= ∂/∂xi. Here and in the following discussion, summa-
tion over repeated indices is implied with greek indices α, β∈ {x,
y, z} and latin indices i, j∈ {x, y}.

The assignment ofMtom to the second order expansion, Eq. (4),
is based on our intuitive expectation, Eq. (2). The question
whether or not this term is “topological” will be discussed in the
following and is answered by the semiclassical perturbation the-
ory (see Methods). In addition to the effect of TOM we propose a
novel contribution to the orbital magnetization, which is linear in
the derivatives of the underlying texture, Eq. (3), and thereby
generally sensitive to its chirality. We thus refer to it as the chiral
orbital magnetization (COM). We will show how this effect can
be attributed to a different kind of effective field (see Fig. 1a),
which emerges from the interplay of spin–orbit coupling and
non-collinearity along one spatial dimension.

While our approach is very general, for the purposes of
including into consideration the effect of interfacial spin–orbit
coupling and providing realistic numerical estimates, we focus
our further analysis on the two-dimensional magnetic Rashba
model

H ¼
p2

2m�eff
þ αRðσ ´ pÞz þ Δxc σ � bnðxÞ; ð5Þ
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where m�eff is the electron’s (effective) mass, σ denotes the vector
of Pauli matrices, αR is the Rashba spin–orbit coupling constant,
and Δxc is the strength of the local exchange field. This model has
been proven to be extremely fruitful in unraveling various phe-
nomena in surface magnetism26 and is known for its pronounced
orbital response27.

Emergent fields of spin textures. Before discussing the emer-
gence of orbital magnetism in this model, it is rewarding to
discuss the appearance of effective fields in slowly-varying chiral
spin textures in the limit of αRj j � Δxcj j. In this regime, it can be
shown that to linear order in αR, the spin–orbit coupling can be
absorbed into a perturbative correction of the canonical
momentum p! pþ eAR, with AR � m�effαRϵ

ijzσ iej=e. This
means that the Hamiltonian can be rewritten as:

H ¼
pþ eAR
� �2

2m�eff
þ Δxcbn � σ þO α2R

� �
: ð6Þ

For αRj j � Δxcj j (to be precise, with correct physical dimen-
sions, one should compare the length scales λR ¼ �h=αRm

�
eff and

λxc ¼ �h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δxcm

�
eff

p
and write λR � λxc instead) and Δxc→∞ the

spin polarization of the wavefunctions is only weakly altered away
from bn and we can use an SU(2) gauge field, defined by
Uy σ � bnð ÞU � σz , to rotate our Hamiltonian into the local axis
specified by bn (neglecting the terms of the order O α2R

� �
)28,29:

H ! UyHU ¼
pþ eAðXÞð Þ2

2m�eff
þ Δxc σz; ð7Þ

where the potential A now comprises the mixing of two gauge
fields: A ¼ UyARU þAxc, with the additional contribution
Axc ¼ �i�hUy∇U=e. The essential idea is now the following: as
Δxc→∞, electrons are confined to the bands, which correspond
either to spin-up states "j i or spin-down states #j i depending on
sgn(Δxc). This means that we can effectively replace the vector
potential by its adiabatic counterpart, i.e.,

A ! Aad � sgn Δxcð Þ #h jA #j i

¼ AR
ad þA

xc
ad;

ð8Þ

where AR
ad ¼ U

yARU
� �

ad. Thus, the effective Hamiltonian for
Δxc→∞ contains the vector potential of a classical magnetic field,

which couples only to the orbital degree, accompanying the
“ferromagnetic” system23,30,31. It is given by the classical
expression Beff ¼ ∇ ´Aad ¼ BR

eff þ Bxc
eff . By following this proce-

dure, one finds the expressions

Bxc
eff

� �
z
¼ �

�h

2e
sgn Δxcð Þbn � ∂bn

∂x
´

∂bn
∂y

� �
ð9Þ

BR
eff

� �
z
¼ �

m�effαR
e

sgn Δxcð Þdivbn: ð10Þ

We thus arrive at the fundamental result that in addition to the
field given by Eq. (9) above that can be recognized as the
generalization of Eq. (1), there is a contribution to the overall
field, which explicitly depends on the chirality of the underlying
texture and is non-vanishing already for one-dimensional spin
textures. In this context, it makes sense to refer to these co-
existing fields as topological and chiral for Bxc

eff and BR
eff ,

respectively, see Fig. 1. Importantly, in contrast to the emergent
topological field, Bxc

eff

� �
z
, the local magnitude of BR

eff

� �
z
is directly

proportional to the strength of the spin–orbit interaction as given
by αR. This appears to be very promising with respect to
achieving a large magnitude of the chiral field in chiral spin
textures emerging at surfaces and interfaces. To give a rough
estimate, assuming a pitch of the texture on a length scale of L=
20 nm and ħαR= 1 eV Å the amplitude of the local chiral
emergent field reaches as much as 2πmeαR/(eL) ≈ 270 T, which
is roughly by an order of magnitude larger than the correspond-
ing topological field in a skyrmion of a similar size1.

The emergence of two types of fields in spin textures, appearing
in Eqs. (9) and (10), is crucial for a qualitative understanding of
the emergence of topological and chiral orbital magnetism, which
are discussed in detail below.

Chiral orbital magnetization. To get a first insight into the novel
effect of COM, we consider the limit of small SOI, i.e., αR � Δxc.
In this case, the gradient expansion (see Methods) provides an
analytic expression for the local space-dependent orbital moment.
Up to O αRð Þ it is given by

Mcom ¼ �
1
2
χ"þ#LP BR

eff

� �
z
h μ=Δxc

� �
; ð11Þ

Fig. 1 Schematic depiction of emergent magnetic fields. As electrons (gray spheres) are adiabatically traversing a a Néel spiral or b a Néel skyrmion

(small arrows, with color indicating the z-projection), their wavefunction twists just in the same way as it would under the influence of an external magnetic

field (the direction is depicted with vertical arrows, the sign and magnitude is illustrated by the colored background). The integrated flux of this emergent

topological field over the skyrmion is quantized, while the averaged value of the emergent chiral field for a uniform spin-spiral is zero (although it can be

non-zero for a 90° domain wall). The emergent field locally gives rise to persistent currents (depicted with circular arrows) and the corresponding a chiral

(for a spiral) and b topological (for a skyrmion) orbital magnetization
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where the function h(x)≡ (3x2− 1)Θ(1− |x|)/2 describes the
energy dependence of COM with Θ representing the Heaviside
step-function. The magnitude of COM is thus directly propor-
tional to the strength of spin–orbit interaction and vanishes in the
limit of zero αR. Furthermore, Mcom is proportional to the dia-
magnetic Landau-Peierls susceptibility32 χ"þ#LP ¼ �e

2= 12πm�eff
� �

,
which characterizes the orbital response of a free-electron gas.
Indeed, this seems reasonable in the limit of αR � Δxc with the
chemical potential positioned in the majority band, as the true
orbital magnetic susceptibility of the Rashba model (as calculated
by Fukuyama’s formula20,21) reduces to χoms � χ"þ#LP =2 in the
same limit. For |μ| ≈ |Δxc| we, therefore, arrive at at the intuitive
result guided by Eq. (2) with Beff replaced by the chiral emergent
field:

Mcom ¼ �
1
2
χ"þ#LP BR

eff

� �
z
: ð12Þ

This reflects the fact that in the limit of αRj j � Δxcj j the
emergence of chiral orbital magnetization can be understood as
the coupling of a mixed SU(2) gauge field to the diamagnetic
Landau-Peierls susceptibility.

The behavior of COM becomes complicated and deviates
remarkably from the αR-linear expression given by Eq. (12) as the
Rashba parameter increases. To demonstrate this, we numerically
calculate the value of Mcom at the center of a skyrmion, in a wide
range of parameters Δxc and αR of the Rashba Hamiltonian, Eq.
(5), while fixing the chemical potential at μ= 0. We parameterize
the skyrmion in the polar coordinates (ρ, ϕ) by choosing bnðρ; ϕÞ
= (sin θ(ρ) cos Φ(ϕ), sin θ(ρ) sin Φ(ϕ), cosθ(ρ))T as the local
magnetization vector1. Here, we define Φ(ϕ)=mϕ+ γ with the
vorticity m and the helicity γ. For a Néel skyrmion γ= 0, whereas
a Bloch skyrmion is represented by the value γ= π/2. The
topological charge of the skyrmion then equals Nsk=R
dxdybn � ∂xbn ´ ∂ybn

� �
=ð4πÞ=−m. In order to model the radial

dependency refer to Romming et al.33 and choose a 360° domain
wall, which is described by two parameters: the domain wall
width w and the core size c (see Methods).

The results are presented in Fig. 2 for a Néel skyrmion (γ= 0)
with w= 20 nm, c= 0 nm and m= 1. The magnetization is given
in units of μ�B=nm

2 with the effective Bohr magneton
μ�B ¼ e�h= 2m�eff

� �
. In this plot, we observe that while the gauge

field picture is valid in the limit of Δxc/αR→∞, there exists a
pronounced region in the (αR, Δxc)-phase-space where COM

exhibits a strong non-linear enhancement. This is in contrast to
the case of Bloch skyrmions, where COM vanishes identically for
all (αR, Δxc), reflecting the symmetry of the Rashba coupling. It
also elucidates our terminology, since already the gauge field
description can be used to verify that Mcom∝ cos γ (for vorticity
m= 1), thereby making COM explicitly dependent on the
helicity.

Topological orbital magnetization. The TOM appears as the
correction to the OM, which is second order in the gradients of
the texture, Eq. (4), and while it vanishes for one-dimensional
spin textures, we show that it is finite for 2D textures such as
magnetic skyrmions. In contrast to COM, the TOM is non-
vanishing even without spin–orbit interaction. To investigate this,
we set αR to zero, reducing the effective vector potential to A ¼
Axc and with the emergent field turning into Bxc

eff

� �
z
, Eq. (9). The

gradient expansion (see Methods) now indeed reveals that

Mtom ¼ �
1
2
χ"þ#LP Bxc

eff

� �
z
μ=Δxc

� �
; ð13Þ

which again confirms the gauge-theoretical expectation.
Remarkably, the similarity between Eqs. (12) and (13) underlines
the common origin of the COM and TOM in the “effective”
magnetic field in the system, generated by a combination of a
gradient of bn along x with spin–orbit interaction (in case of
COM), and by a combination of the gradients of bn along x and y
(in case of TOM).

To explore the behavior of TOM in the presence of spin–orbit
interaction, αR ≠ 0, we numerically compute the value of TOM at
the center of the Néel (Bloch) skyrmion with parameters used in
the previous section, as function of Δxc and αR (at μ= 0). The
corresponding phase diagram, presented in Fig. 2, displays two
notable features. The first one is the relative stability of Eq. (13)
against a perturbation by a spin–orbit field in the limit of
Δxcj j � αRj j. The second one is the significant enhancement of
TOM in the regime where |αR| > |Δxc|, similar to COM (albeit
over a larger part of the parameter space).

Interplay of topologies. The phase diagrams in Fig. 2 have been
evaluated at the core of a skyrmion. We now take a more global
perspective and analyze the decomposition of the overall orbital
magnetization into its constituent parts Mcom and Mtom as a
function of ρ, the radial position inside the skyrmion with w= 20
nm and c= 0 (see Fig. 3a)). By fixing ħαR to 2 eV Å, and Δxc to
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Fig. 2 The phase diagram of chiral and topological orbital magnetization. The magnitude of aMcom and bMtom, Eqs. (3) and (4) respectively, is evaluated at

the core of a Néel (Bloch) skyrmion (m= 1, c= 0 nm, w= 20 nm) as a function of the parameters Δxc and αR of the Rashba Hamiltonian Eq. (5) with μ= 0.

The limit Δxc � αR , Δxc≳ 0.51 eV corresponds to the coupling of the emergent magnetic field to the diamagnetic Landau-Peierls susceptibilty (what we

refer to as “LP limit”). In an intermediate regime of Δxc≲ αR orbital magnetism is strongly enhanced
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0.9 eV with μ= 0, we position ourselves precisely in the region of
orbital enhancement discussed above in the context of the phase
diagrams. When the local direction of the magnetization (para-
metrized by spherical coordinates θ and ϕ) is close to the z-axis,
Mcom and Mtom are rather gently varying, whereas their behavior
reveals strong resonance in the vicinity of in-plane directions (θ ≈
π/2). The emergence of this resonance coincides with an occur-
rence of a band crossing at the critical k-value of ħkc= |Δxc/αR|
with the polar coordinate in the Brillouin zone of ϕk= ϕ− π/2 in
the local ferromagnetic electronic structure, which corresponds to
the given magnetization direction, see Fig. 3b, c.

It is known that this specific band crossing in the Rashba
model leads to a vastly enhanced diamagnetic susceptibility27 and
in close analogy, a strong response in Mcom and Mtom can be
expected based on Eq. (2). To study the origin of this effect in
greater detail, we plot Mtom as a function of μ for two different
magnetization directions. The results, presented in Fig. 3d, e
reveal the sensitivity of Mtom to the SOI-mediated deformation of
the purely parabolic free-electron bands separated by Δxc. The
magnitude of TOM is largest and exhibits pronounced oscilla-
tions in a narrow energy interval around the band edges. When
we turn bn into the in-plane direction, it can be seen how the
resonances of Mtom are enhanced in magnitude and are carried
along by those band extrema, which eventually touch at θ= π/2,
pushing the peaks of Mtom through the chemical potential (which
was aligned to μ= 0 for Fig. 3b). For three different values of the
chemical potential (indicated by the symbolic arrows) the

strongly μ-dependent real-space density of the total orbital
magnetization M is shown in Fig. 3f–h. This anisotropic behavior
cannot be accounted for within the emergent magnetic field
picture, which only relies on the real-space texture with its
associated topological charge and winding density.

The “critical” metallic point in the Rashba model that we
encounter is topologically non-trivial. Indeed, the upper and
lower bands of the magnetic Rashba model bare non-zero Chern
numbers, C1 = ±sgn(Δxc)1/2, with the sign depending on the
band34. The Chern number is a topological invariant of energy
bands in k-space and can only change when bands are crossing.
Since the sign of C1 changes under the transformation Δxc→

−Δxc, the emergence of the critical metallic point at θ= π/2 is
enforced when the direction of the magnetization is changed from
θ= 0 to θ= π. This is illustrated in Fig. 3c. In the context of
topological metals, such a point is known as a mixed Weyl
point35, owing to the quantized flux of the Berry curvature
permeating through the mixed space of k and θ (as confirmed
explicitly by the calculations for the magnetic Rashba model).
These points have recently been shown to give rise to an
enhancement of spin–orbit torques and Dzyaloshinskii-Moriya
interaction in ferromagnets35. Here, we demonstrate the crucial
role that such topological features in the electronic structure
could play for the pronounced chirality-driven orbital magnetism
of spin textures. Given the observation that TOM simply follows
the evolution of the electronic structure in real-space via the
direction of the local magnetization (as illustrated in a schematic
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plane direction of bn. b This resonance coincides with a critical point in the mixed space that is spanned by the momentum space coordinates k and the

polar angle, which bn encloses with the z-axis. Here, the two Rashba bands cross, which is further illustrated in figure c, showing the energy levels as a

function of ρ, where k is held fixed at its critical value kc. The nature of this crossing—which is a necessary consequence of the topology in real and

momentum space—is further studied in the figures d, e which depict Mtom as a function of the chemical potential μ across the bandstructure for two

different positions in the skyrmion (indicated by the red arrow in the gray coordinate spheres). The symbolic arrows on the right mark the values of μ,

which are used to evaluate the real-space distributions of Mcom+Mtom shown in f–h. These exemplify the complex real-space landscape and intricate

energy dependence of orbital magnetism in spin–orbit coupled interfacial skyrmions as a consequence of the interplay between real- and reciprocal space

topology
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way in Fig. 3d, e), the close correlation of real- and reciprocal
space topologies offer promising design opportunities in sky-
rmions or domain walls of transition-metals with complex
anisotropic electronic structure.

Topological quantization and stability. One of the key proper-
ties of Mtom is its origin in the local real-space geometry of the
texture. This has drastic consequences for the topological prop-
erties of the overall orbital moment of two-dimensional topolo-
gically non-trivial spin textures as we reveal below for the case of
chiral magnetic skyrmions. We thus turn to the discussion of the
total integrated values of the orbital moments in chiral spin
textures by defining them as

mcom=tom ¼

Z
dxMcom=tomðxÞ: ð14Þ

Concerning the total value of the COM-driven orbital moment
in one-dimensional uniform 360° or 180° chiral domain walls it
always vanishes identically by arguments of symmetry (although
it can be finite for example in a 90° wall). In sharp contrast, the
TOM-driven total orbital moment of isolated skyrmions generally
does not vanish. This can be most clearly shown in the limit when
the gauge field approach is valid (i.e., Δxc � αR). In this case, the
total flux of the emergent topological and chiral fields through an
isolated skyrmion is given by

Φ
xc �

Z

R
2
dx Bxc

eff

� �
z
¼ 2Φ0Nsk ð15Þ

Φ
R �

Z

R
2
dx BR

eff

� �
z
¼ 0: ð16Þ

It then follows from Eq. (12), that the integrated value of Mcom

vanishes while Eq. (13) predicts the quantization of the
topological orbital moment mtom to integer multiples of
χ"þ#LP Φ0 ¼ �μ

�
B=6 (at |μ|= |Δxc|). In this limit, the skyrmion of

non-zero topological charge Nsk ≠ 0 thus behaves as an ensemble
of Nsk effective particles which occupy a macroscopic atomic
orbital with an associated value of the orbital angular momentum
of μ�B=6. This quantization is explicitly confirmed in Fig. 4a),
where we present the calculations of mtom for Néel and Bloch-
type skyrmions with dimensions c= 0 nm and w= 20 nm at a
fixed value of Δxc= 0.9 eV while varying αR for different
topological charges Nsk∈ {−1, −2, −3, −4}. The results,
presented in units of m0 ¼ �μ

�
B=12 (corresponding to the

Landau-Peierls limit at μ= 0 and Nsk=−1), reveal a stable
plateau, corresponding to the regime of topological quantization,
where mtom attains the value Nsk m0.

In the opposite limit of αR > Δxc the magnitude of Mtom can be
enhanced drastically with respect to the topologically quantized
value. When ħαR reaches a magnitude of about 1 eV Å, the
emergent field picture breaks down and we discover a drastic
increase in Néel–mtom by as much as one order of magnitude
upon increasing αR. And although mtom is not topologically
quantized in this regime, it still attains a distinctly different
magnitude for different skyrmion charges, and while it is weakly
dependent on the c/w ratio (up to a couple of percent), when c=
const the variations of w keep mtom strictly constant (see the
insets in Fig. 4 with c= 0). The latter robustness can be
demonstrated already analytically on the level of Eq. (4) using
the transformation of coordinates x→ x/w. Remarkably, in the
regime of enhanced SOI, the strong dependence of the local TOM
on the helicity of the skyrmion (i.e., Néel or Bloch), uncovered in

Fig. 2, is translated into a drastic dependence of the overall
topological orbital moment on the way that the magnetization
rotates from the core towards the outside region, as shown in
Fig. 4. Such behavior of the topological orbital moment with
respect to deformations of the underlying texture suggests that
monitoring the dynamics of the orbital magnetization in
skyrmionic systems can be used not only to detect the formation
of skyrmions with different charge, but also to distinguish various
types of dynamical “breathing” modes of skyrmion dynamics36.

Discussion
On a fundamental level, COM and TOM arise as a consequence
of the changes in the local electronic structure caused by a non-
collinear magnetization texture. Since the effective magnetic fields
directly couple to the orbital degree of freedom, they lead to the
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how mtom (in units of m0 ¼ �μ
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B=12) passes from its regime of topological

quantization (mtom/m0=−Nsk) to a regime of strong enhancement, with

Néel and Bloch structures clearly distinguishable. Intermediate phases form

a continuum between the two values (shaded regions). The inset

demonstrates for the case of Néel skyrmions, that a level structure is still

present at αR= 2 eV. b For the particular case of αR= 2.0 and Δxc= 0.9 eV,

μ= 0 the γ phase shift is used to interpolate from a Néel to a Bloch-type

Skyrmion of charge Nsk=−1 (equivalent to vorticity m= 1), leading to a

drastic loss of mtom. Variations in the shape of the skyrmion (shown in the

inset), as quantified by the ratio of c/w, have a very small effect
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emergence of chiral and topological orbital magnetization. While
this intuitive interpretation in terms of real-space gauge fields
eventually breaks down at large SOI, it makes room for a regime
of strong enhancement in which the intertwined topologies of
real- and reciprocal space lead to novel design aspects in the
bandstructure engineering of orbital physics. This is possible by
exploiting either the spin–orbit interaction or the dispersive
behavior of the bands, i.e., their effective mass. In particular, the
metallic point in the mixed parameter space of the non-collinear
Rashba model reveals its strong impact on COM and TOM. Such
critical points will have a pronounced effect on the orbital mag-
netism even if they are emerging on the background of metallic
bands in transition-metal systems. Therefore, our analysis indi-
cates in which materials an experimental detection of orbital
magnetism that is originating from non-collinearity is the most
feasible. By numerically evaluating the magnitude and real-space
behavior of the TOM and COM, we thereby uncover that by
tuning the parameters of surface and interfacial systems the
orbital magnetism of domain walls and chiral skyrmions can be
engineered in a desired way.

Concerning experimental observation of the effects discussed
here, Mtom and Mcom could be accessible by techniques such as
off-axis electron holography37 (sensitive to local distribution of
magnetic moments), or scanning tunneling spectroscopy (sensi-
tive to the local electronic structure) in terms of B-field induced
changes in the dI/dU or d2I/dU2 spectra38. An already existing
proposal for the detection of non-collinearity driven orbital
magnetization of skyrmions by Dias et al.9 relies on X-ray mag-
netic circular dichroism (XMCD), which is able to distinguish
orbital contributions to the magnetization from the spin
contributions9.

Further, the emergence of COM and TOM can give a thrust to
the field of electron vortex beam microscopy39—where a beam of
incident electrons intrinsically carries orbital angular momentum
interacting with the magnetic system—into the realm of chiral
magnetic systems. For example, we speculate that at sufficient
intensities, electron vortex beams could imprint skyrmionic tex-
tures possibly by partially transforming its orbital angular
momentum into TOM. Since the topological orbital moment is
directly proportional to the topological charge of the skyrmions,
we also suggest that the interaction of TOM with external mag-
netic fields could be used to trigger the formation of skyrmions
with large topological charge. Ultimately, the currents of sky-
rmions can be employed for low-dissipation transport of the
associated topological orbital momenta over large distances in
skyrmionic devices.

While in this work we focus primarily on TOM, the here
discovered chiral orbital magnetization has been an overlooked
quantity in chiral magnetism so far. Besides the fact that it
emerges already in one-dimensional chiral systems and serves as
a playground to study the effects of mixed space Berry phases, it
can reach very large values depending on the details of the texture
as well as strength of SOI. Even in case of skyrmions, where the
argument of vanishing effective flux, Eq. (16), might suggests that
COM is not of importance, it turns out that beyond the αR→ 0
limit the integral effect ofMcom can be substantially enhanced in a
way similar to TOM. A prominent example for the importance of
COM is given e.g., in Vanadium-doped BiTeI40, which has a large
SOC of ħαR= 3.8 eV Å and an exchange gap of Δxc= 45 meV. If
this material would host Néel skyrmions (m= 1, w= 20 nm, c=
0 nm), mcom would reach approximately 12μ�B, which has mag-
nitudes larger than the corresponding mtom of about �0:7μ�B.
Creating skyrmions and large COM in strong Rashba systems
might, therefore, be a promising direction to pursue.

In a wider perspective, the emergence of TOM and COM gives
rise to a physical object that is directly connected to the orbital

degree of freedom with the advantage that it can be understood
from a semiclassical perspective in a way, which is engineerable
and controllable. Our findings thus open new vistas for exploiting
the orbital magnetism in chiral magnetic systems, thereby
opening interesting prospects for the field of “chiral” spintronics
and orbitronics.

Methods
Gradient expansion. The expansion in exchange field gradients is naturally
achieved within the phase-space formulation of quantum mechanics, the Wigner
representation17,22. The key quantity in this approach is the retarded single-particle
Green’s function GR, implicitly given by the Hamiltonian H via the Dyson equation

ϵ� Hðx; πÞ þ i0þð Þ ? GRðx; πÞ ¼ id; ð17Þ

where xμ= (t, x) and πμ= (ϵ, π) are the four-vectors of position and canonical
momentum, respectively. The latter of the two, in terms of the elementary charge e
> 0 and the electromagnetic vector potential A, is related to the zero-field
momentum p by the relation πμ(x, p)= pμ+ eAμ(x). The ⋆-product, formally
defined by the operator

? � exp
i�h

2
∂

 

xμ ∂

!

πμ
� ∂

 

πμ
∂

!

xμ � eFμν
∂

 

πμ ∂

!

πν

� �	 

ð18Þ

of left- and right-acting derivatives ∂
$

, allows for an expansion of GR in powers of ħ,
gradients of bn and external electromagnetic fields, captured in a covariant way by
the field tensor Fμν ¼ ∂xμ

Aν � ∂x
ν

Aμ22.
In this work, we are after the orbital magnetization (OM) in z-direction. Given

the grand canonical potential Ω, the surface density of the orbital moment is given
by25,41

MðxÞ ¼ �∂B ΩðxÞh i; ð19Þ

which requires an expansion of Ω up to at least first order in the magnetic field B
= Bez in the collinear case. In the limit of T→ 0, the grand potential is
asymptotically related to the Green’s function GR via

Ωh i � �
1
π
=

Z
dp

ð2π�hÞ2
f ðϵÞðϵ� μÞtrGRðx; pÞ; ð20Þ

where ℑ denotes the imaginary part, the integral measure is defined as dp= dϵ d2p,
f(ϵ) represents the Fermi function f(ϵ)= (eβ(ϵ−μ)+ 1)−1, μ is the chemical
potential and β−1= kBT. In our approach, deviations from the collinear theory
enter the formalism as gradients of bn and can be traced systematically in GR and in
Ω, finally leading to Eqs. (3) and (4).

Computational details. All calculations were performed with a Green’s function
broadening i0+→ iΓ with Γ= 100 meV while we approach the zero-temperature
limit by setting kBT= 10 meV. The k-space integrals are then performed on a
quadratic 512 × 512 mesh. The effective electron mass was set to m�eff=me ¼ 3:81
everywhere except for the example of V-doped BiTeI, where m�eff=me ¼ 0:142.

Skyrmion parametrization. In order to model the skyrmions in this work we
choose the profile, which can be described by the parametrization1

bnðρ; ϕÞ ¼
sinðθðρÞÞcosðΦðϕÞÞ

sinðθðρÞÞsinðΦðϕÞÞ

cosðθðρÞÞ

0

B@

1

CA: ð21Þ

The topological charge is then given by

Nsk ¼
1
4π

R
dx

R
dybn � ∂xbn ´ ∂ybn

� �

¼ � 1
4πΦðϕÞj

2π
0 cosθðρÞj10 :

ð22Þ

Assuming Φ(ϕ)=mϕ+ γ, with the vorticity m 2 Z and the helicity γ 2 R (Néel
skyrmions correspond to γ= 0, Bloch skyrmions to γ= π/2), as well as the
property θ(0)= π and θ(∞)= 0, the integral evaluates to Nsk=−m. A realistic
profile satisfying these requirements and which is used in this work is given by33

θðρÞ ¼
X

±

arcsin tanh �
�ρ± c
w=2

� �� �
þ π; ð23Þ

with the core size c and the domain wall width w.

Data availability
The code and the data that support the findings of this work are available from the
corresponding authors on request.
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