000852911 001__ 852911
000852911 005__ 20240610115344.0
000852911 0247_ $$2doi$$a10.1073/pnas.1219937110
000852911 0247_ $$2ISSN$$a0027-8424
000852911 0247_ $$2ISSN$$a1091-6490
000852911 0247_ $$2Handle$$a2128/19752
000852911 0247_ $$2pmid$$apmid:23345440
000852911 0247_ $$2WOS$$aWOS:000315812800023
000852911 0247_ $$2altmetric$$aaltmetric:1196193
000852911 037__ $$aFZJ-2018-05698
000852911 082__ $$a000
000852911 1001_ $$0P:(DE-HGF)0$$aBasan, M.$$b0
000852911 245__ $$aAlignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing
000852911 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2013
000852911 3367_ $$2DRIVER$$aarticle
000852911 3367_ $$2DataCite$$aOutput Types/Journal article
000852911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538740538_6219
000852911 3367_ $$2BibTeX$$aARTICLE
000852911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852911 3367_ $$00$$2EndNote$$aJournal Article
000852911 520__ $$aRecent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity. Implementing this idea in a mechanical tissue simulation, the proposed model gives rise to efficient spreading and can explain the experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the buildup of tensile stress throughout the tissue. Our model also qualitatively reproduces the dependence of swirl size and swirl velocity on cell density reported in experiments and exhibits an undulation instability at the edge of the spreading tissue commonly observed in vivo. Finally, we study the dependence of colony spreading speed on important physical and biological parameters and derive simple scaling relations that show that coordination of motility forces leads to an improvement of the wound healing process for realistic tissue parameters.
000852911 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000852911 588__ $$aDataset connected to CrossRef
000852911 7001_ $$0P:(DE-Juel1)130629$$aElgeti, J.$$b1
000852911 7001_ $$0P:(DE-HGF)0$$aHannezo, E.$$b2
000852911 7001_ $$0P:(DE-HGF)0$$aRappel, W.-J.$$b3
000852911 7001_ $$0P:(DE-HGF)0$$aLevine, H.$$b4$$eCorresponding author
000852911 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1219937110$$gVol. 110, no. 7, p. 2452 - 2459$$n7$$p2452 - 2459$$tProceedings of the National Academy of Sciences of the United States of America$$v110$$x1091-6490$$y2013
000852911 8564_ $$uhttps://juser.fz-juelich.de/record/852911/files/2452.full.pdf$$yOpenAccess
000852911 8564_ $$uhttps://juser.fz-juelich.de/record/852911/files/2452.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852911 909CO $$ooai:juser.fz-juelich.de:852911$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b1$$kFZJ
000852911 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000852911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852911 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000852911 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852911 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000852911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000852911 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000852911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852911 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852911 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000852911 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852911 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000852911 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852911 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000852911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852911 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000852911 9801_ $$aFullTexts
000852911 980__ $$ajournal
000852911 980__ $$aVDB
000852911 980__ $$aUNRESTRICTED
000852911 980__ $$aI:(DE-Juel1)ICS-2-20110106
000852911 981__ $$aI:(DE-Juel1)IBI-5-20200312
000852911 981__ $$aI:(DE-Juel1)IAS-2-20090406