000852912 001__ 852912
000852912 005__ 20240610115344.0
000852912 0247_ $$2doi$$a10.1073/pnas.1011086107
000852912 0247_ $$2ISSN$$a0027-8424
000852912 0247_ $$2ISSN$$a1091-6490
000852912 0247_ $$2Handle$$a2128/19753
000852912 0247_ $$2pmid$$apmid:21078958
000852912 0247_ $$2WOS$$aWOS:000285050800007
000852912 0247_ $$2altmetric$$aaltmetric:5027696
000852912 037__ $$aFZJ-2018-05699
000852912 082__ $$a000
000852912 1001_ $$0P:(DE-HGF)0$$aRanft, J.$$b0
000852912 245__ $$aFluidization of tissues by cell division and apoptosis
000852912 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2010
000852912 3367_ $$2DRIVER$$aarticle
000852912 3367_ $$2DataCite$$aOutput Types/Journal article
000852912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538740720_9755
000852912 3367_ $$2BibTeX$$aARTICLE
000852912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852912 3367_ $$00$$2EndNote$$aJournal Article
000852912 520__ $$aDuring the formation of tissues, cells organize collectively by cell division and apoptosis. The multicellular dynamics of such systems is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. In the absence of division and apoptosis, we consider the tissue to behave as an elastic solid. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the system is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the expression for the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems using dissipative particle dynamics
000852912 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000852912 588__ $$aDataset connected to CrossRef
000852912 7001_ $$0P:(DE-HGF)0$$aBasan, M.$$b1
000852912 7001_ $$0P:(DE-Juel1)130629$$aElgeti, J.$$b2
000852912 7001_ $$0P:(DE-HGF)0$$aJoanny, J.-F.$$b3
000852912 7001_ $$0P:(DE-HGF)0$$aProst, J.$$b4
000852912 7001_ $$0P:(DE-HGF)0$$aJulicher, F.$$b5$$eCorresponding author
000852912 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1011086107$$gVol. 107, no. 49, p. 20863 - 20868$$n49$$p20863 - 20868$$tProceedings of the National Academy of Sciences of the United States of America$$v107$$x1091-6490$$y2010
000852912 8564_ $$uhttps://juser.fz-juelich.de/record/852912/files/20863.full.pdf$$yOpenAccess
000852912 8564_ $$uhttps://juser.fz-juelich.de/record/852912/files/20863.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852912 909CO $$ooai:juser.fz-juelich.de:852912$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b2$$kFZJ
000852912 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000852912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852912 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000852912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852912 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000852912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015
000852912 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015
000852912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852912 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852912 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852912 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000852912 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852912 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000852912 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852912 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000852912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852912 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000852912 9801_ $$aFullTexts
000852912 980__ $$ajournal
000852912 980__ $$aVDB
000852912 980__ $$aUNRESTRICTED
000852912 980__ $$aI:(DE-Juel1)ICS-2-20110106
000852912 981__ $$aI:(DE-Juel1)IBI-5-20200312
000852912 981__ $$aI:(DE-Juel1)IAS-2-20090406