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During the formation of tissues, cells organize collectively by cell

division and apoptosis. The multicellular dynamics of such systems

is influenced by mechanical conditions and can give rise to cell re-

arrangements and movements. We develop a continuum descrip-

tion of tissue dynamics, which describes the stress distribution and

the cell flow field on large scales. In the absence of division and

apoptosis, we consider the tissue to behave as an elastic solid. Cell

division and apoptosis introduce stress sources that, in general,

are anisotropic. By combining cell number balance with dynamic

equations for the stress source, we show that the tissue effectively

behaves as a viscoelastic fluid with a relaxation time set by the

rates of division and apoptosis. If the system is confined in a fixed

volume, it reaches a homeostatic state in which division and apop-

tosis balance. In this state, cells undergo a diffusive randommotion

driven by the stochasticity of division and apoptosis. We calculate

the expression for the effective diffusion coefficient as a function

of the tissue parameters and compare our results concerning both

diffusion and viscosity to simulations of multicellular systems using

dissipative particle dynamics.

active fluids ∣ fluctuations ∣ growth processes ∣ source stress

Many biological processes, such as organ development or can-
cerous tumor growth, involve the remodeling of tissues by

cell division and cell death or apoptosis. For many years, empha-
sis has been put on the regulation of growth by signaling pathways
such as growth factors and its genetic control (1, 2). Recently,
however, the importance of the mechanical properties of tissues
has been realized (3–7). It has been shown, for example, that
during the development of the fruit fly Drosophila, the expression
of some of the essential genes can be strongly modified by the
application of external forces that change the local mechanical
stresses acting on the cells in the growing organism (8). At certain
stages of development, such as gastrulation, the spatial distribu-
tion of mechanical stresses also seems to play a role in controlling
the pattern of gene expression (9). Quite similarly, in tumor pro-
gression, gene expression is related to the stress distribution in
the tumor (7, 10).

The rates of cell division and cell death depend on many bio-
logical parameters, but they also depend on the local cell density
or pressure in the tumor. It has recently been argued that the
tissue pressure at which cell death exactly compensates cell divi-
sion is an important parameter that could be related to the inva-
siveness of a tumor in a host tissue (11). Such a pressure has been
called homeostatic pressure, and the corresponding tissue steady
state, the homeostatic state. This pressure is defined as the iso-
tropic part of the stress acting on cells directly and is not related
in any simple way to the hydrostatic pressure.

From a mechanical point of view, a tissue is a complex system
where the growth due to cell division and cell death interferes
with the elastic deformation. Cell division and death often lead
to unusual boundary conditions associated with both the fluxes
of cells and local stresses. The mechanical properties of tissues
have been described at various length scales. At the mesoscopic
cellular scale, tissues have been described by analogy to foams as
a network of cell junctions with a reorganization due to cell death
and cell division (12, 13). This approach permits the considera-
tion of key aspects of cellular behavior, but it usually is quasi-

static and therefore does not capture the slow relaxation times
of large wavelength modes. At a more macroscopic level, one
can use a continuum mechanics or hydrodynamic approach
(11, 14–16). In this approach, the tissue is described by macro-
scopic variables such as local deformations and local stresses, and
a constitutive equation is required to study its mechanical proper-
ties. A recent review of the continuum description of growth pro-
cesses emphasizing the role of nonlinear effects is found in ref. 17.
In many cases, tissues can be considered as solids with linear or
nonlinear elasticity that allows them to resist shear and compres-
sion (3, 18). The crumpling instabilities of plant tissues in leaves,
for example, are very well accounted for by a description in terms
of growing elastic materials (19). At higher shear stresses, tissues
can yield and have been proposed to behave as plastic materials
(20). Liquid-like behavior has, for example, been observed for
embryonic tissues (21, 22). In this case, an elastic modulus is mea-
sured at short times and a viscosity at long times. The reported
values of the shear modulus are of the same order as the shear
modulus of the actin cytoskeleton in cells. The viscoelastic relaxa-
tion time of a tissue can be of the order of a few minutes (23). The
question that we address here concerns the behavior of an elastic
tissue on time scales long compared to that of cell division and
apoptosis.

Reorganization processes such as the appearance of disloca-
tion pairs in an ordered solid are known to relax elastic stresses
only partly. Complete unbinding of dislocations is required to ob-
tain full stress relaxation and melting (24). Even though division
and apoptosis are clearly coupled to the tissue volume change and
thus to the isotropic part of the stress, i.e., the tissue pressure,
their coupling to the shear part of the stress is less obvious. Re-
cent experiments done on single cells in a controlled environment
such as patterned or deformable surfaces have clearly shown that
one can orient the axis of cell division by applying an external
constraint (25–27). Therefore, repeated rounds of cell division
and apoptosis can affect both the isotropic and anisotropic parts
of the tissue stress. The aim of this paper is to quantitatively study
this effect in various situations.

This paper is organized as follows. In the next section, we
consider tissues as elastic media and show that the coupling of
cell division and cell death to the local stresses effectively leads
to viscoelastic behavior with a relaxation time set by the rate of
cell division. We first consider tissues in an isotropic homeostatic
state. Our approach is then generalized to growing isotropic
tissues and eventually to anisotropic tissue growth. In the subse-
quent section, we consider fluctuations of cell displacements and
stresses in the tissue due to the stochasticity of cell division and
calculate the diffusion constant of a tracer particle. The third
section presents numerical simulations of dynamic tissues from
which we determine both the diffusion constant of a cell and
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the tissue viscosity. The last section is devoted to a discussion of
our results.

Growing Tissues as Elastic Media
We consider a tissue in which cells are linked to their neighbors
by adhesion molecules. We assume that at short time scales this
tissue behaves as an elastic solid. For small deformations, the
tissue elasticity is described by a linear relation between stress
and strain. For simplicity, we consider here only the case where
the tissue is isotropic and described by a compressional modulus
χ and a shear modulus μ.

At longer time scales, the tissue is remodeled by the appear-
ance of new cells by division and the disappearance of cells by cell
death. The cell number density ρ then obeys the balance equation

∂tρþ ∂αðρvαÞ ¼ ðkd − kaÞρ; [1]

where vαðrÞ is the cell velocity field at position r, ∂α denotes the
partial derivative with respect to the coordinate rα, and ∂t is the
partial time derivative. We use the Einstein convention and sum
over repeated indices. The rates of cell division and apoptosis are
denoted kd and ka, respectively.

Division and apoptosis imply a change of local stress generated
actively. In a continuum description, the local stress associated
with each event is a force dipole that can be described by a
symmetric tensor dαβ because division and apoptosis do not
generate any net torque. The associated force dipole density is
Dαβ ¼ ∑nd

ðnÞ
αβ δðr − rnÞ. The elastic stress σelαβ created by the force

dipole density Dαβ satisfies the force balance equation

∂βσelαβ ¼ ∂βDαβ: [2]

The stress generated by cell division and apoptosis, σsαβ ¼ −Dαβ,
acts as a source of stress in the tissue. The total stress
σαβ ¼ σelαβ þ σsαβ satisfies the force balance ∂βσαβ ¼ 0. A detailed
discussion of tissue stress force balance is presented in SI Text,
Force Dipoles in an Elastic Medium.

For a simple elastic material without remodeling, the elastic
stress is given by σelαβ ¼ Cαβγνuγν, where the strain tensor uγν
describes the elastic deformation, andCαβγν is the tensor of elastic
constants of the material. For an isotropic material, Cαβγν ¼
χδαβδγν þ 2μðδαγδβν − δαβδγν∕3Þ. In the presence of cell division
and apoptosis, a unique reference state of the strain can no longer
be defined. However, differences of strain between subsequent
states still have a meaning (see SI Text, Dynamic Force Dipole
Densities), and we can write

D

Dt
σαβ ¼ Cαβγνvγν þ

D

Dt
σsαβ: [3]

Here, vαβ ¼ ð1∕2Þð∂αvβ þ ∂βvαÞ is the strain rate tensor,
ðD∕DtÞσαβ ¼ ∂tσαβ þ vγ∂γσαβ þ ωαγσγβ þ ωβγσαγ denotes the con-
vected corotational time derivative, and ωαβ ¼ ð1∕2Þð∂αvβ − ∂βvαÞ
is the vorticity of the flow. We introduce the isotropic and the
traceless parts of the total stress, σ and ~σαβ, respectively,
with σαβ ¼ σδαβ þ ~σαβ.

The rate of change of the isotropic component of the source
stress is related to the rates of cell division and of apoptosis.
Each cell division creates a positive isotropic contribution
dd ¼ dαα∕3 > 0 to the isotropic force dipole dαα and each apop-
tosis event a negative contribution da < 0. Therefore, in a tissue
the isotropic part of the source stress changes as

d

dt
σs ¼ −ρðddkd þ dakaÞ; [4]

where ðd∕dtÞ ¼ ∂t þ vγ∂γ . Note that the rates of division and
apoptosis kd and ka generally depend on local stress as well as
on cell density. The isotropic part of the total stress then obeys

d

dt
σ ¼ χvγγ − ρðddkd þ dakaÞ: [5]

We make here the assumption that the cell volume ρ−1 is under
cellular control and depends on the isotropic part of the stress. In
the simplest form, this assumption implies an equation of state
σ ¼ σðρÞ relating isotropic stress and cell density. As a conse-
quence of this simple choice, σ depends only on the current cell
configuration but not on history. Note that, in general, the rela-
tion between cell density and stress is more complex and can
involve memory. The equation of state imposes that dσ∕dt ¼
ðdσ∕dρÞðdρ∕dtÞ. Using Eq. 1 we find that this is compatible with
Eq. 5 only if ρðddkd þ dakaÞ ¼ χðkd − kaÞ, so that d ¼ dd ¼ −da
and d ¼ χ∕ρ. The total stress thus obeys

d

dt
σ ¼ −

χ

ρ

dρ

dt
; [6]

which by using Eq. 1 can be rewritten as

d

dt
σ ¼ χ½vγγ − ðkd − kaÞ�: [7]

To discuss the traceless component of the source stress, the
anisotropy of cells must be considered. This anisotropy deter-
mines the preferred axis of cell division and becomes apparent
in the shape anisotropy of a given cell. It can be induced by ex-
ternal stresses or signaling cues, by internal factors, or by inter-
actions between cells. Averaging this anisotropy in a small volume
defines the nematic tensor ~qαβ ¼ hnαnβ − 1

3
δαβi, where the unit

vector n defines the axis of cell anisotropy. The rate of change
of the nematic tensor to linear order is given by

∂t ~qαβ ¼ −
1

τq
ð~qαβ − ~σαβ∕σ0Þ: [8]

Here we consider the case where the relaxation of the nematic
tensor on a time scale τq > 0 is driven mainly by the local aniso-
tropic stress, and we ignore additional effects such as morphogen
gradients. The response of the cell anisotropy to stress is de-
scribed by the coefficient σ0 > 0. Note that the isotropic compo-
nent of the stress does not contribute to the relaxation of the
nematic tensor, which is traceless. In the following, we consider
the case where the anisotropy relaxation is faster than cell divi-
sion and apoptosis such that ~qαβ ≃ ~σαβ∕σ0.

Cell division is anisotropic. Each division event contributes a

change −~dαβ to the anisotropic component of the source stress
~σsαβ. Because the cell division axis is on average aligned with

the local tissue anisotropy, the force dipole ~dαβ is proportional

to the nematic tensor: ~dαβ ¼ ~dd ~qαβ. The rate of change of the
traceless part of the source stress is then given by

D

Dt
~σsαβ ¼ −ρð~ddkd þ ~dakaÞ~qαβ: [9]

Here, we have added the contribution of force dipoles associated

with apoptosis events ~da. Typically, ~dd > 0 and ~da < 0. Using
~qαβ ≃ ~σαβ∕σ0, we find that the total traceless stress obeys the con-
stitutive relation

�

1þ τa
D

Dt

�

~σαβ ¼ 2η~vαβ; [10]

which corresponds to a Maxwell model of a viscoelastic material.
The shear viscosity is η ¼ τaμ with a relaxation time τ−1a ¼

ρð~ddkd þ ~dakaÞ∕σ0. The Maxwell model implies that for long
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times the traceless stress relaxes to zero and the tissue has a fluid
behavior. This fact is a key result of this work.

Tissue elasticity together with the rate of change of the source
stress define the properties of the tissue considered as an active
material. In the following, we use this framework to discuss tissue
behavior in various stationary and growing states.

Isotropic Homeostatic State. The isotropic homeostatic state is a
homogeneous stationary state in which the cell density is constant
(ρ ¼ ρh), there is no cell flow (vα ¼ 0), the nematic tensor
vanishes (~qαβ ¼ 0), and the source stress σsαβ is isotropic and time-
independent. These conditions require that kd ¼ ka and ddkdþ
daka ¼ 0. Because dd ¼ −da ¼ d, both conditions are identical.
Note that, strictly speaking, this is only true on average. The ex-
istence of an equation of state implies that dρ ¼ χ. The condition
kdðρÞ ¼ kaðρÞ determines the homeostatic density ρh and via the
equation of state the isotropic stress σ ¼ σðρhÞ ¼ −Ph (where Ph

is the homeostatic pressure in the tissue).
Close to the homeostatic state, the properties of the tissue

are obtained by expanding the effective cell number growth rate
kd − ka to linear order in the density deviations δρ ¼ ρ − ρh, and
we write kd − ka ≃ −τ−1δρ∕ρh. Density deviations and stress
deviations δσ ¼ σ þ Ph are related via the equation of state. Thus,
the tissue is described by (with ζ ¼ τχ)

�

1þ τ
d

dt

�

δρ ¼ −ρhτvγγ ;
�

1þ τ
d

dt

�

δσ ¼ ζvγγ ;

�

1þ τa
D

Dt

�

~σαβ ¼ 2η~vαβ: [11]

The first two equations are equivalent and show that the den-
sity and the isotropic part of the stress tend to relax to a fixed
homeostatic density and pressure within a relaxation time τ with
a Maxwell dynamics. The relaxation of the isotropic stress is the
second central result of this work. Maxwellian dynamics of the
isotropic part of the stress is a unique feature of the homeostatic
state, which is absent in fluids with a conserved number of par-
ticles even at a liquid vapor critical point (28). This property is
associated with the fact that, in the homeostatic state, the tissue
is infinitely compressible. The pressure does not depend on the
volume of the tissue because the number of cells is regulated by
cell division and apoptosis. As a consequence, one can expect
giant fluctuations of the volume of the tissue at constant (homeo-
static) pressure. In a similar vein, the traceless part of the stress
relaxes to zero with a relaxation time τa proportional to the cell
division time k−1d . This stress relaxation under the influence of
elastic dipole densities is a specific feature of tissues.

Growing Tissue. If the external pressure Pext is different from the
homeostatic pressure Ph, no homeostatic state exists. In this case,
the isotropic stress does not relax, but the anisotropic stress still
relaxes to zero in the absence of external anisotropic stress.
Because shear stresses relax, the tissue is effectively viscoelastic
and can still be described by a Maxwell model. The constitutive
equations then read

d

dt
σ ¼ χ½vγγ − κðρÞ�; [12]

�

1þ τa
D

Dt

�

~σαβ ¼ 2η~vαβ; [13]

where κðρÞ ¼ kd − ka and σ ¼ σðρÞ.
A state of stationary growth with constant pressure and con-

stant density exists with σðρÞ ¼ −Pext and

vγγ ¼ κðσÞ; [14]

~σαβ ¼ 2η~vαβ: [15]

Stationary growth implies that the divergence of the velocity is
constant, and in steady state (beyond the shear relaxation time
τa) the tissue behaves as a viscous fluid under shear. In a spatially
homogeneous system, the volume growth rate is κ ¼ kd − ka. If
the tissue is considered as incompressible, χ becomes large.

In a situation of isotropic growth of a system with spherical
symmetry, the velocity field v of the cells can be calculated di-
rectly by using spherical coordinates, and we obtain v ¼ ðκ∕3Þr.
The radius of the tissue is given by ∂tRðtÞ ¼ vðRÞ and thus grows
exponentially: RðtÞ ¼ R0e

κt∕3.

Anisotropic Growth. In many situations, the growth of a tissue is
anisotropic. Anisotropy arises because of tissue polarity where
cell polarity in the tissue is aligned on large scales and character-
ized by the unit vector pα. Such large-scale patterns of cell polarity
are known to exist in epithelia and other tissues (29, 30). They
could arise because of the existence of signaling gradients in
the tissue, e.g., morphogen gradients, or could be because of cells
aligning their polarity with their neighbors. Cell division is then
on average oriented along the axis of cell polarity. Anisotropic
stresses are generated by cell division, and thus growth is aniso-
tropic.

If the anisotropy is set by an external field such as a morphogen
gradient, the anisotropy of the tissue in the absence of stress is
given by a traceless nematic tensor ~q0αβ. In the presence of stress,
the nematic tensor in the tissue relaxes according to

∂t ~qαβ ¼ −
1

τq

�

ð~qαβ − ~q0αβÞ −
~σαβ

σ0

�

: [16]

As in nematic elastomers, the elastic stress in the tissue depends
both on the local deformation and on the order parameter. The
traceless part of the elastic stress is given by

~σelαβ ¼ 2μ ~uαβ þ w~qαβ; [17]

where w is the elasto-nematic coupling coefficient and we have
ignored the elastic anisotropy for the sake of simplicity. The iso-
tropic component of the elastic stress is still given by σel ¼ χuγγ .
The source stress due to cell division and cell apoptosis is given by
Eqs. 4 and 9, as for an isotropic tissue, but the division and apop-
tosis rates become functions of the local density as well as of the
local order parameter.

We now discuss the traceless component of the stress tensor.
As for isotropic tissues, we assume that the orientation dynamics
of the nematic tensor is fast compared to cell division. Using
~qαβ ¼ ~q0αβ þ ~σαβ∕σ0, we find that the traceless part of the stress
tensor satisfies

�

1þ τa
D

Dt

�

~σαβ ¼ 2η~vαβ − σ0 ~q
0

αβ: [18]

This equation is similar to the constitutive equation obtained for
active polar gels as a description of the cell cytoskeleton (31). The
stress relaxes over a time τa, and an anisotropic tissue therefore
behaves as a Maxwell viscoelastic fluid. There is an additional
component of the stress on the right-hand side of Eq. 18, which
is proportional to the spontaneous nematic tensor ~q0αβ. This stress

has the same form as the active stress of ref. 31. Note that this
active stress has a contribution proportional to the cell division
rate and a contribution proportional to the apoptosis rate. The
magnitude −σ0 of the active stress is negative if the cells orient
along the principal axis of the stress as the tissue grows. This si-
tuation corresponds to a dilative active stress. Active stresses in
tissues have been first introduced by Bittig et al. (16).
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An anisotropic tissue can reach a steady homeostatic stress. In
the homeostatic state, the rates of cell death and cell division
must be equal so that kdðρh;~q

0

αβÞ ¼ kaðρh;~q
0

αβÞ. The steady state

behavior also implies that, after a round of cell division and cell
death, the tissue goes back to the same mechanical state. This

constraint imposes ~dd ¼ −~da.
Let us first discuss this homeostatic state in the case of uniaxial

order. In this case, one can write ~qαβ ¼ qðpαpβ −
1

3
δαβÞ, where q is

a measure of the degree of cell orientational order and pα defines
the macroscopic tissue polarity. Rotational invariance requires
that both the duplication and apoptosis rates depend only on
ρ and q but not on the direction of pα. The existence of a tissue
equation of state implies that q ¼ sðρÞ is a function of cell density
ρ and that eventually the rates kd and ka are functions of ρ only.
The steady state condition is now similar to that of isotropic li-
quids kdðρhÞ ¼ kaðρhÞ, but this equality defines both ρh and qh. As
a consequence, if one measures the stress developed by a uniaxial
tissue at steady state, the homeostatic stress in the symmetry axis
direction is different from the homeostatic stress in the directions
perpendicular to it. Conversely, in an ensemble where one im-
poses stresses, in order to obtain a homeostatic state one has
to set both stresses to their homeostatic values. The case of biaxial
order follows the same logic: There are two measures of the order
independent of axis orientation (32), which also obey equations
of state, and the steady state condition together with the two or-
der parameters defines a homeostatic density. In this case, the
tissue develops three different homeostatic stress values in three
orthogonal directions of space. In turn, in order to obtain a steady
state in a stress-imposed ensemble, one has to impose three dif-
ferent values in the three directions.

Fluctuations in a Homeostatic Tissue
In this section, we study the effect of noise on the mechanical
properties of a tissue. For the sake of simplicity, here we consider
only the vicinity of the homeostatic state of an isotropic nonpo-
larized tissue.

Density and Velocity Fluctuations. Cell division and apoptosis are
stochastic processes. This stochasticity introduces noise in the cell
number balance equation (Eq. 11), which we now write as

d

dt
δρþ ρhvγγ ¼ −τ−1δρþ ξc: [19]

The cell division and apoptosis noise has a vanishing average
hξci ¼ 0. Its correlation function can be approximated by writing
the master equation for the number of cells in the absence of cell
flow and assuming constant rates, leading to hξcðr;tÞξcðr0;t0Þi ¼
ρhðkd þ kaÞδðr − r0Þδðt − t0Þ. The isotropic stress fluctuation is
related to the density fluctuation by the equation of state
dδσ∕dt ¼ −χ∕ρhdδρ∕dt. Noise must also be introduced in the
equation for the traceless part of the stress tensor, associated with
fluctuations of cell shape and of the orientation of cell division,
and thus we write

�

1þ τa
D

Dt

�

~σαβ ¼ 2η~vαβ − ~ξαβ: [20]

We do not give here a microscopic description of this noise. We
assume only that the fluctuations are correlated over time scales
much shorter than the cell division time so that this noise can be

considered as local in time. It has zero mean, h~ξαβi ¼ 0, and be-
cause of the symmetry of the traceless component of the stress
tensor its correlations are characterized by a noise strength θ

with h~ξαβðr;tÞ~ξγδðr0;t0Þi ¼ θ½δαγδβδ þ δαδδβγ − ð2∕3Þδαβδγδ�δðr − r0Þ
δðt − t0Þ.

We decompose all quantities in Fourier modes in space and
time with the convention f ðq;ωÞ ¼ ∫ dt∫ dre−iðqr−ωtÞf ðr;tÞ. Using

the force balance equation ∂ασαβ ¼ 0 and Eqs. 19, 20, one can
calculate the density fluctuation and the velocity fluctuation as
a function of noise. The density fluctuation in the homeostatic
state reads

δρ ¼
τρh

ð1 − iωτaÞζ þ ð1 − iωτÞ 4
3
η

�

4

3
ηρ−1h ξc −

qα ~ξαβqβ

q2

�

; [21]

where ζ ¼ τχ is the effective bulk viscosity. In order to calculate
the velocity fluctuation, one decomposes it into a longitudinal
and a transverse component, vα ¼ vjjqα∕qþ v⊥α, and we obtain

vjj ¼
1

iq

1

ð1 − iωτaÞζ þ ð1 − iωτÞ 4
3
η

�

ð1 − iωτaÞζρ
−1
h ξc

þ ð1 − iωτÞ
qα ~ξαβqβ

q2

�

;

v⊥α ¼
i

ηq2
½~ξαβqβ − qαqγ ~ξγβqβ∕q2�:

[22]

Diffusion of a Tracer Particle. In order to illustrate the role of the
fluctuations in the tissue, we consider a tracer particle of radius a
immersed in the tissue and moving by Brownian-type motion with
the cell flow (33). If the particle follows the local velocity field in
the tissue, its diffusion constant is given by

D ¼
1

3

Z

∞

0

dτ

Z

d3q

ð2πÞ3
heiq½rpðτÞ−rpð0Þ�vðq;τÞvð−q;0Þi: [23]

We use the approximation that fluctuations in particle positions
and velocity fluctuations in the tissue are decoupled and write the

diffusion constant as D ¼ ∫ d3q
3ð2πÞ3

hvðq;ωÞvð−q; − ωÞijω¼0. The ve-

locity correlation function can be directly calculated from Eq. 22.
The integral over the wave vector requires a maximum cutoff as-
sociated with the finite size of the particle qmax ¼ 2π∕ð2aÞ. The
diffusion constant in the homeostatic state then reads

D ¼
1

3πa

�

1

ðζ þ 4

3
ηÞ2

�

ζ2kd
ρh

þ
2

3
θ

�

þ
θ

η2

�

: [24]

The diffusion constant therefore varies with the cell division rate
kd. In order to make the result more transparent, we assume in
the following that the tissue is hardly compressible so that ζ ≫ η.
In this limit, the expression for the diffusion constant reduces to

D ¼ 1

3πa
½kd
ρh
þ θðρh

~dkd
μ

Þ2�. Here, we have expressed η ¼ τaμ and

~d ¼ ~dd þ ~da. The diffusion coefficient increases with the cell divi-
sion rate and varies linearly at small values of kd. Note, however,
that the noise intensity θ could itself be a function of kd.

Numerical Simulations
In order to test the ideas presented in the previous sections, we
perform numerical simulations of dynamic tissues. From these
simulations we determine both the tissue viscosity and the diffu-
sion constant of individual cells (which can be considered as
tracer particles) as a function of the cell division rate in the
homeostatic state.

Tissue Simulations. The procedure used to simulate tissues is de-
tailed in SI Text (Numerical Simulations). In short, we use a few
intuitive rules for cell behavior to simulate the growth of a three-
dimensional tissue. Each cell is represented by two point particles
that interact via a repulsive potential. The separation of the
particles due to repulsion corresponds to cell growth. When
the particles reach a critical distance, the cell divides. Cell divi-
sion is described by inserting two new particles close to the initial
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ones, thereby adding one new cell. As this process repeats, the
tissue grows (see Fig. 1).

Neighboring cells interact with each other via a short-range
repulsive and a long-range attractive potential. Furthermore,
dissipative particle dynamics (DPD) (34, 35) is used to describe
effects of internal friction and fluctuations. The DPD method
can locally conserve momentum as required for hydrodynamic
behavior. Finally, to mimic apoptosis, cells are randomly removed
at a rate independent of time and pressure. An example of growth
described by this model is provided in Movie S1.

Viscosity. In our simulations, we measure the shear viscosity of a
tissue grown between two walls until reaching the homeostatic
state (by using periodic boundary conditions in the plane). We
shear the tissue by moving the top wall with a prescribed velocity
relative to the bottom wall while keeping their distance fixed. The
boundary conditions at the wall are described in SI Text, Boundary
conditions and measurement procedures. We determine the shear
rate from the measured velocity profile in the tissue, and we mea-
sure the stress exerted on the walls.

We first perform these simulations for a reference system with
parameters given in SI Text, Standard tissue and units, and
Table S1. Parameters used in the other simulations are specified
relative to this reference system. For most values of the imposed
velocity gradient, the stress is a nonlinear function of shear rate
and the tissue shows shear thinning. At small shear rates, how-
ever, the viscosity is given by the ratio of stress to shear rate
in linear response. Fig. 2 shows the variation of the viscosity η

as a function of the division rate kd for different parameter
choices. For large values of kd, the viscosity decreases as a func-
tion of the division rate with a power law η ∝ k−1.2d close to our
prediction η ∝ k−1d . Nonlinearities that are at the origin of the
nonlinear rheology observed in our simulations are introduced
in SI Text, Nonlinearities. Shear thinning will be discussed in a
future publication.

On short time scales, the tissue behaves as a solid. However, if
the imposed stress is larger than a critical yield stress, the tissue
starts to flow.

Diffusion. In order to determine the diffusion coefficient of cells
in the simulations, we let a tissue grow in a cubic compartment
with periodic boundary conditions until it reaches the homeo-
static state. Subsequently, we track cells individually and calculate
their mean squared displacement (MSD). In the absence of cell
turnover (no division or apoptosis), the displacement increases
initially with time but saturates at a finite value. This saturation
indicates caging and solid-like behavior. In the presence of cell
division and apoptosis, the displacement shows diffusive beha-
vior. We determine the diffusion coefficient by a linear fit to
the MSD. The resulting diffusion coefficients displayed in Fig. 3
are proportional to kd as expected from our theory. Note that the
MSD of a cell over its lifetime remains the same for different
values of the cell division rate.

Discussion
The first important result of this work is that cell division and
apoptosis introduce a dynamic reorganization of elastic tissues

that leads to liquid-like behavior with well-defined shear and bulk
viscosities on long time scales and in the vicinity of the homeo-
static state. A unique consequence of these cellular reorganiza-
tions in the vicinity of the homeostatic state is the absence of a
compression modulus. As a result, imposing cell pressures either
slightly larger or slightly smaller than the homeostatic pressure
leads either to the complete disappearance of the tissue or, on
the contrary, to a complete invasion of space by the growing
tissue. Our analytical calculation of the shear viscosity can well
describe simulations capturing the essence of cell duplication
and apoptosis. The relaxation of the stress in the tissue is because
of a bias of the axis of cell rearrangements by local stress. Such a
bias on the axis of cell division has been demonstrated in spec-
tacular experiments for single cells in elastic environments
(27, 36). However, it does not exist for all cell types. Whether
or not these effects can be observed in practical situations de-
pends on the actual values of τ and τa compared to the observa-

Fig. 1. Tissue growth simulation. The figure shows the first cell division and

the early stages of tissue growth. Each cell is represented by two spheres.
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tion time. For instance, in plants these times appear to be much
longer than in many animal tissues.

The second important result of our work concerns the study of
noise in the tissue. Here, we mostly considered the noise due to
cell division and cell death. Other sources of noise such as the
noise due to cell shape fluctuations (formation of protrusions
for example) could also play an important role (37). Density cor-
relation functions can be measured in the simulations and could
be directly compared to experiments. In the future, such a fluc-
tuation analysis could become an important way to characterize
tissues. A spectacular illustration of the role of noise could be
obtained in experiments in which a tissue is confined by a piston
with a constant pressure equal to the homeostatic pressure acting
on the tissue. Starting from the conservation equations with
noise, one can easily show that the position of the piston is diffus-
ing with a diffusion constant D≃ Lðkd þ kaÞ∕ðρSÞ, where S is
the area of the piston and L is the tissue thickness. These giant
fluctuations are associated with the vanishing compressibility of
the tissue that we obtain in the hydrodynamic theory.

In this study, we assumed that the only stress relaxation
mechanisms are cell division and cell death. In the case where
the adhesion is not too strong, other stress relaxation mechanisms
can exist, for example, those related to fluctuations of cell shape.
In this case, our predictions remain very similar, but the stress
relaxation rate becomes the sum of the relaxation rates of the
various relaxation modes. The viscous relaxation time can be-

come much smaller than the cell division time, and accordingly
the shear viscosity is strongly reduced. This smaller relaxation
time is consistent with recent experiments on young tissues during
development or on cancerous tissues where viscosities of the
order of 105 Pa·s and viscoelastic relaxation times of the order
of a few minutes have been measured (23, 38). However, these
relaxation modes do not couple to the isotropic part of the stress,
and the time scales for the compression and dilation deforma-
tions are still controlled by cell division and death.

In this paper, we presented only a linear description of the
rheology of tissues. Some recent experiments suggest that tissues
show shear thinning, i.e., that their viscosity decreases with the
shear rate. This effect is also observed in our simulations when
the shear rate is large compared to the division and apoptosis
rates. Another nonlinear effect observed in the simulation is
the existence of a yield stress that corresponds to a plastic beha-
vior of the tissue. The yield stress again exists only at very low
values of the cell division rate.

Last, we considered here that the tissue is a one-component
fluid. We therefore implicitly neglect the roles of both the inter-
stitial fluid and of the extracellular matrix, and we do not keep
track of total mass conservation. Our approach can be general-
ized to take into account the regulation of cell division and cell
death by growth factors and also the possible effects of the tissue
mechanics on this regulation.
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