000852913 001__ 852913
000852913 005__ 20240625095038.0
000852913 0247_ $$2doi$$a10.1103/PhysRevB.98.155107
000852913 0247_ $$2ISSN$$a0163-1829
000852913 0247_ $$2ISSN$$a0556-2805
000852913 0247_ $$2ISSN$$a1094-1622
000852913 0247_ $$2ISSN$$a1095-3795
000852913 0247_ $$2ISSN$$a1098-0121
000852913 0247_ $$2ISSN$$a1550-235X
000852913 0247_ $$2ISSN$$a2469-9950
000852913 0247_ $$2ISSN$$a2469-9969
000852913 0247_ $$2Handle$$a2128/19754
000852913 0247_ $$2WOS$$aWOS:000446296600003
000852913 0247_ $$2altmetric$$aaltmetric:34268200
000852913 037__ $$aFZJ-2018-05700
000852913 082__ $$a530
000852913 1001_ $$0P:(DE-HGF)0$$aNghiem, H. T. M.$$b0
000852913 245__ $$aTime-dependent numerical renormalization group method for multiple quenches: Towards exact results for the long-time limit of thermodynamic observables and spectral functions
000852913 260__ $$aWoodbury, NY$$bInst.$$c2018
000852913 3367_ $$2DRIVER$$aarticle
000852913 3367_ $$2DataCite$$aOutput Types/Journal article
000852913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564402955_12778
000852913 3367_ $$2BibTeX$$aARTICLE
000852913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852913 3367_ $$00$$2EndNote$$aJournal Article
000852913 520__ $$aWe develop an alternative time-dependent numerical renormalization group (TDNRG) formalism for multiple quenches and implement it to study the response of a quantum impurity system to a general pulse. Within this approach, we reduce the contribution of the NRG approximation to numerical errors in the time evolution of observables by a formulation that avoids the use of the generalized overlap matrix elements in our previous multiple-quench TDNRG formalism [Nghiem et al., Phys. Rev. B 89, 075118 (2014); Phys. Rev. B 90, 035129 (2014)]. We demonstrate that the formalism yields a smaller cumulative error in the trace of the projected density matrix as a function of time and a smaller discontinuity of local observables between quenches than in our previous approach. Moreover, by increasing the switch-on time, the time between the first and last quench of the discretized pulse, the long-time limit of observables systematically converges to its expected value in the final state, i.e., the more adiabatic the switching, the more accurately is the long-time limit recovered. The present formalism can be straightforwardly extended to infinite switch-on times. We show that this yields highly accurate results for the long-time limit of both thermodynamic observables and spectral functions, and overcomes the significant errors within the single quench formalism [Anders et al., Phys. Rev. Lett. 95, 196801 (2005); Nghiem et al., Phys. Rev. Lett. 119, 156601 (2017)]. This improvement provides a first step towards an accurate description of nonequilibrium steady states of quantum impurity systems, e.g., within the scattering states NRG approach [Anders, Phys. Rev. Lett. 101, 066804 (2008)].
000852913 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000852913 536__ $$0G:(DE-Juel1)jiff23_20140501$$aThermoelectric properties of molecular quantum dots and time-dependent response of quantum dots (jiff23_20140501)$$cjiff23_20140501$$fThermoelectric properties of molecular quantum dots and time-dependent response of quantum dots$$x1
000852913 542__ $$2Crossref$$i2018-10-02$$uhttps://link.aps.org/licenses/aps-default-license
000852913 588__ $$aDataset connected to CrossRef
000852913 7001_ $$0P:(DE-Juel1)130600$$aCosti, Theodoulos$$b1$$eCorresponding author$$ufzj
000852913 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.155107$$bAmerican Physical Society (APS)$$d2018-10-02$$n15$$p155107$$tPhysical Review B$$v98$$x2469-9950$$y2018
000852913 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.155107$$gVol. 98, no. 15, p. 155107$$n15$$p155107$$tPhysical review / B$$v98$$x2469-9950$$y2018
000852913 8564_ $$uhttps://juser.fz-juelich.de/record/852913/files/PhysRevB.98.155107.pdf$$yOpenAccess
000852913 8564_ $$uhttps://juser.fz-juelich.de/record/852913/files/PhysRevB.98.155107.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852913 909CO $$ooai:juser.fz-juelich.de:852913$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130600$$aForschungszentrum Jülich$$b1$$kFZJ
000852913 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000852913 9141_ $$y2018
000852913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852913 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852913 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000852913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000852913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000852913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852913 920__ $$lyes
000852913 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000852913 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000852913 9801_ $$aFullTexts
000852913 980__ $$ajournal
000852913 980__ $$aVDB
000852913 980__ $$aI:(DE-Juel1)IAS-3-20090406
000852913 980__ $$aI:(DE-82)080012_20140620
000852913 980__ $$aUNRESTRICTED
000852913 981__ $$aI:(DE-Juel1)PGI-2-20110106
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.2541
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.035440
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.5528
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.166802
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045330
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.246803
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.067402
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.266408
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.136401
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.779
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.215304
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.135301
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.93.011606
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.143601
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.155156
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaf5134
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.299
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.085113
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2009-00962-3
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.193303
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.125124
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.146802
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349
000852913 999C5 $$1U. Weiss$$2Crossref$$9-- missing cx lookup --$$a10.1142/6738$$y2008
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.176403
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2004/04/P04005
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.076401
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/220/1/012022
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.201407
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.235429
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.196801
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245113
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.066804
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/19/195216
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.075118
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.115115
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.075118
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.035129
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.165130
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.156601
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.195155
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2011-20880-7
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.47.773
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.1003
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.14254
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.395
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.165413
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.245316
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.241104
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.035435
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.199902
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.126802
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.075404
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.115139
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.165105
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.125145
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/aa9fdc
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.076402
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.11986
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.104432
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/10/37/021
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.1508
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245114
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/6/13/013
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.808
000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.155435
000852913 999C5 $$1A. C. Hewson$$2Crossref$$oA. C. Hewson The Kondo Problem to Heavy Fermions 1997$$tThe Kondo Problem to Heavy Fermions$$y1997