000852913 001__ 852913 000852913 005__ 20240625095038.0 000852913 0247_ $$2doi$$a10.1103/PhysRevB.98.155107 000852913 0247_ $$2ISSN$$a0163-1829 000852913 0247_ $$2ISSN$$a0556-2805 000852913 0247_ $$2ISSN$$a1094-1622 000852913 0247_ $$2ISSN$$a1095-3795 000852913 0247_ $$2ISSN$$a1098-0121 000852913 0247_ $$2ISSN$$a1550-235X 000852913 0247_ $$2ISSN$$a2469-9950 000852913 0247_ $$2ISSN$$a2469-9969 000852913 0247_ $$2Handle$$a2128/19754 000852913 0247_ $$2WOS$$aWOS:000446296600003 000852913 0247_ $$2altmetric$$aaltmetric:34268200 000852913 037__ $$aFZJ-2018-05700 000852913 082__ $$a530 000852913 1001_ $$0P:(DE-HGF)0$$aNghiem, H. T. M.$$b0 000852913 245__ $$aTime-dependent numerical renormalization group method for multiple quenches: Towards exact results for the long-time limit of thermodynamic observables and spectral functions 000852913 260__ $$aWoodbury, NY$$bInst.$$c2018 000852913 3367_ $$2DRIVER$$aarticle 000852913 3367_ $$2DataCite$$aOutput Types/Journal article 000852913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564402955_12778 000852913 3367_ $$2BibTeX$$aARTICLE 000852913 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000852913 3367_ $$00$$2EndNote$$aJournal Article 000852913 520__ $$aWe develop an alternative time-dependent numerical renormalization group (TDNRG) formalism for multiple quenches and implement it to study the response of a quantum impurity system to a general pulse. Within this approach, we reduce the contribution of the NRG approximation to numerical errors in the time evolution of observables by a formulation that avoids the use of the generalized overlap matrix elements in our previous multiple-quench TDNRG formalism [Nghiem et al., Phys. Rev. B 89, 075118 (2014); Phys. Rev. B 90, 035129 (2014)]. We demonstrate that the formalism yields a smaller cumulative error in the trace of the projected density matrix as a function of time and a smaller discontinuity of local observables between quenches than in our previous approach. Moreover, by increasing the switch-on time, the time between the first and last quench of the discretized pulse, the long-time limit of observables systematically converges to its expected value in the final state, i.e., the more adiabatic the switching, the more accurately is the long-time limit recovered. The present formalism can be straightforwardly extended to infinite switch-on times. We show that this yields highly accurate results for the long-time limit of both thermodynamic observables and spectral functions, and overcomes the significant errors within the single quench formalism [Anders et al., Phys. Rev. Lett. 95, 196801 (2005); Nghiem et al., Phys. Rev. Lett. 119, 156601 (2017)]. This improvement provides a first step towards an accurate description of nonequilibrium steady states of quantum impurity systems, e.g., within the scattering states NRG approach [Anders, Phys. Rev. Lett. 101, 066804 (2008)]. 000852913 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000852913 536__ $$0G:(DE-Juel1)jiff23_20140501$$aThermoelectric properties of molecular quantum dots and time-dependent response of quantum dots (jiff23_20140501)$$cjiff23_20140501$$fThermoelectric properties of molecular quantum dots and time-dependent response of quantum dots$$x1 000852913 542__ $$2Crossref$$i2018-10-02$$uhttps://link.aps.org/licenses/aps-default-license 000852913 588__ $$aDataset connected to CrossRef 000852913 7001_ $$0P:(DE-Juel1)130600$$aCosti, Theodoulos$$b1$$eCorresponding author$$ufzj 000852913 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.155107$$bAmerican Physical Society (APS)$$d2018-10-02$$n15$$p155107$$tPhysical Review B$$v98$$x2469-9950$$y2018 000852913 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.155107$$gVol. 98, no. 15, p. 155107$$n15$$p155107$$tPhysical review / B$$v98$$x2469-9950$$y2018 000852913 8564_ $$uhttps://juser.fz-juelich.de/record/852913/files/PhysRevB.98.155107.pdf$$yOpenAccess 000852913 8564_ $$uhttps://juser.fz-juelich.de/record/852913/files/PhysRevB.98.155107.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000852913 909CO $$ooai:juser.fz-juelich.de:852913$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000852913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130600$$aForschungszentrum Jülich$$b1$$kFZJ 000852913 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000852913 9141_ $$y2018 000852913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000852913 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000852913 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000852913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015 000852913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000852913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000852913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000852913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000852913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000852913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000852913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000852913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000852913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000852913 920__ $$lyes 000852913 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0 000852913 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000852913 9801_ $$aFullTexts 000852913 980__ $$ajournal 000852913 980__ $$aVDB 000852913 980__ $$aI:(DE-Juel1)IAS-3-20090406 000852913 980__ $$aI:(DE-82)080012_20140620 000852913 980__ $$aUNRESTRICTED 000852913 981__ $$aI:(DE-Juel1)PGI-2-20110106 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.2541 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.035440 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.5528 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.166802 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045330 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.246803 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.067402 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.266408 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.136401 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.86.779 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.215304 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.135301 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.93.011606 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.143601 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.155156 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaf5134 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.299 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.085113 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2009-00962-3 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.193303 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.125124 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.146802 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349 000852913 999C5 $$1U. Weiss$$2Crossref$$9-- missing cx lookup --$$a10.1142/6738$$y2008 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.176403 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2004/04/P04005 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.076401 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/220/1/012022 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.201407 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.235429 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.196801 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245113 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.066804 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/19/195216 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.075118 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.115115 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.075118 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.035129 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.165130 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.156601 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.195155 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2011-20880-7 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.47.773 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.1003 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.14254 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.80.395 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.165413 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.245316 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.241104 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.035435 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.199902 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.126802 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.075404 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.115139 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.165105 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.125145 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/aa9fdc 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.076402 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.11986 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.104432 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/10/37/021 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.1508 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245114 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/6/13/013 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.808 000852913 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.155435 000852913 999C5 $$1A. C. Hewson$$2Crossref$$oA. C. Hewson The Kondo Problem to Heavy Fermions 1997$$tThe Kondo Problem to Heavy Fermions$$y1997