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We develop an alternative time-dependent numerical renormalization group (TDNRG) formalism for multiple

quenches and implement it to study the response of a quantum impurity system to a general pulse. Within this

approach, we reduce the contribution of the NRG approximation to numerical errors in the time evolution of

observables by a formulation that avoids the use of the generalized overlap matrix elements in our previous

multiple-quench TDNRG formalism [Nghiem et al., Phys. Rev. B 89, 075118 (2014); 90, 035129 (2014)].

We demonstrate that the formalism yields a smaller cumulative error in the trace of the projected density

matrix as a function of time and a smaller discontinuity of local observables between quenches than in our

previous approach. Moreover, by increasing the switch-on time, the time between the first and last quench of

the discretized pulse, the long-time limit of observables systematically converges to its expected value in the

final state, i.e., the more adiabatic the switching, the more accurately is the long-time limit recovered. The

present formalism can be straightforwardly extended to infinite switch-on times. We show that this yields highly

accurate results for the long-time limit of both thermodynamic observables and spectral functions, and overcomes

the significant errors within the single quench formalism [Anders et al., Phys. Rev. Lett. 95, 196801 (2005);

Nghiem et al., ibid. 119, 156601 (2017)]. This improvement provides a first step towards an accurate description

of nonequilibrium steady states of quantum impurity systems, e.g., within the scattering states NRG approach

[Anders, Phys. Rev. Lett. 101, 066804 (2008)].

DOI: 10.1103/PhysRevB.98.155107

I. INTRODUCTION

The response of strongly correlated quantum impurity
systems to quenches, pulses, static, and time-dependent fields
remains a challenging theoretical topic of relevance to a
number of fields, including low-energy ion-surface scattering
[1,2], time-dependent dynamics and pumping in quantum
dots [3–6], pump-probe spectroscopies of correlated electron
materials [7–10], and to proposed cold atom realizations of
Anderson and Kondo impurity models [11–15] which may be
probed in real time [16].

Techniques currently being used to investigate the time-

dependent dynamics of quantum impurity systems include

functional and real-time renormalization group methods [17–

19]; flow equation [20,21], quantum Monte Carlo [22–25],

and density matrix renormalization group methods [26–28];

the hierarchical quantum master equation approach [29,30];

and the time-dependent numerical renormalization group

(TDNRG) method [31–40]. However, no single technique

is able to address in a nonperturbative and numerically

exact way the time-dependent and nonequilibrium dynam-

ics of quantum impurity systems in the interesting low-

temperature strong-coupling regime. For example, quantum

Monte Carlo approaches become numerically expensive in

the zero-temperature limit [23]; the functional renormaliza-

tion group approach, while versatile, is often only quantita-

tively accurate for weak to intermediate interaction strengths

[17,41]; and the (single-quench) TDNRG approach suffers

from imperfect thermalization and finite errors in the long-

time limit of observables due, primarily, to the logarithmic

discretization of the bath inherent to this approach [32–35,37–

40,42]. Nevertheless, an approach for the response of quantum

impurity systems to time-dependent fields based on the latter

technique remains promising since it automatically builds in

the nonperturbative element of Wilson’s (equilibrium) numer-

ical renormalization group method [43–46]. Such an approach

would therefore be highly suitable for accessing the low-

temperature strong-coupling physics of quantum impurity

models.

In previous work [37,38], we proposed to improve the

long-time limit of thermodynamic observables, following

a switch from an arbitrary initial state to an arbitrary final

state, within the TDNRG approach, by replacing a single

quench by a sequence of n smaller quenches acting over a

finite time τ̃n (the switch-on time) within a multiple-quench

generalization of the single-quench TDNRG approach.

Within such an approach, which also generalizes the TDNRG

approach to general pulses and periodic driving, we showed

that the long-time limit of thermodynamic observables could

be systematically improved by increasing the number of

quenches and the switch-on time. This resulted in a significant

improvement for the long-time limit of observables over the

corresponding single-quench TDNRG results [37,38]. Despite
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this improvement, the approach still suffers from a number of

problems, which we outline below, and which, to a large ex-

tent, we overcome in this paper, in which we develop an alter-

native formulation of the multiple-quench TDNRG approach.

We identify several problems in the time evolution of

observables as calculated within our previous multiple-quench

TDNRG formalism for general pulses [37,38] (see Secs. II

and III for more details): (i) the trace of the projected density

matrix was found to deviate increasingly away from 1 with

increasing switch-on time τ̃n, the time required to switch

from the initial to the final state, up to some finite switch-on

time, before decreasing again for longer switch-on times (with

a maximum deviation, however, below 1%); (ii) the time

evolution of an observable exhibited small discontinuities at

the times corresponding to all but the first quench; and (iii)

there was no easy way, within this formalism, to extract, other

than numerically, the limit of an infinite switch-on time τ̃n →
∞. The problems (i) and (ii) stem from the way the NRG

approximation is implemented within this approach and the

same problems are also encountered within a hybrid TDNRG

approach to periodic switching [35]. As for (iii), having a

formulation which allows the limit τ̃n → ∞ to be taken

analytically would be advantageous for the following reason:

we found in the approach of Refs. [37,38] that the dependence

of the long-time limit of an observable O(t → ∞) on τ̃n

was, in general, nonmonotonic. While O(t → ∞) eventually

converged with increasing τ̃n to its correct value in the final

state for sufficiently large τ̃n, it was not a priori evident

how large τ̃n should be for convergence to be achieved. This

problem is overcome by our alternative formulation, which

allows the limit τ̃n → ∞ to be taken analytically. In addition,

this formulation yields a much faster convergence of O(t →
∞) with increasing τ̃n, which is moreover monotonic [see

Fig. 3(b) in Sec. III].

In this paper, we present an alternative TDNRG formalism

for multiple quenches which largely overcomes the above

problems, i.e., (i) the trace of the projected density matrix

versus τ̃n remains significantly closer to 1 for all τ̃n (Figs. 2

and 3 in Sec. III); (ii) observables exhibit significantly smaller

discontinuities after each quench [Fig. 2(c) in Sec. III], and

(iii) the limit of infinite switch-on times can be taken analyt-

ically within this formalism and allows obtaining the long-

time limit of thermodynamic observables with high accuracy

(Sec. IV).

Extending this formalism to spectral functions, we also

recover the expected long-time value of the spectral func-

tion in the equilibrium final state with high accuracy (see

Fig. 4 in Sec. IV A). Within a scattering states approach

to nonequilibrium steady states [33,34], such a calculation

would allow the low-temperature nonequilibrium steady-state

spectral function and conductance of interacting quantum dots

to be calculated accurately for arbitrary bias and gate voltages.

Besides the relevance of this for experiments on quantum dots

[47–49], it would also go beyond the recent exact Fermi liquid

approach which addresses only the low bias voltage regime

(relative to the Kondo scale) [50–52] and could serve as a

useful benchmark for other approaches [22,53–56].

The outline of the paper is as follows: In Sec. II, the

alternative multiple quench TDNRG formalism is derived

for finite switch-on times to reduce the effect of the NRG

approximation by avoiding the use of the generalized overlap

matrix elements in Refs. [37,38]. The improvement is shown

by comparing calculations from the two formalisms for the

resonant level model and the Anderson impurity model in

Sec. III. In Sec. IV, the (straightforward) extension to infinite

switch-on times is derived from the formalism presented in

Sec. II. Applications are made to the long-time limit of the

spectral function in Sec. IV A, with additional supporting

results in Appendix B, and to thermodynamic observables

(occupation and double occupation) in Sec. IV B with compar-

ison of the results to the their expected values in the equilib-

rium final state. In addition, we show in Sec. IV C results for

the occupation number of the resonant level model calculated

within exact diagonalization (ED) for multiple quenches in the

infinite switch-on time limit, which further support the con-

clusions made within the multiple quench TDNRG formalism.

The TDNRG expression for the spectral function for multiple

quenches, for a finite and infinite switch-on time, is derived

in Appendix A. Results for the switch-on time dependence

of the spectral function are presented in Appendix C, while

Appendix D discusses the effect of different discretization

parameters on the error in the projected density matrices.

Finally, Appendix E presents the generalization of ED to study

the time evolution of a system following multiple quenches

with both finite and infinite switch-on times for the exactly

solvable resonant level model.

II. MULTIPLE QUENCH TDNRG FOR GENERAL PULSES:

ALTERNATIVE FORMALISM

We consider a system driven from an initial state (described

by H i) to a final state (described by H f ) in a time interval

[0, τ̃n] via a sequence of n + 1 quantum quenches described

by HQp , p = 1, . . . , n + 1, switched on at times τ̃p−1, p =
1, . . . , n + 1 (with τ̃0 = 0) and having duration τp (except

for HQp=n+1 = H f which acts for all t > τ̃n) as depicted in

Fig. 1. The time to switch from the initial to the final state, τ̃n,

will be referred to as the switch-on time throughout the paper

(equivalently, this can be called the duration of the pulse).

The Hamiltonians, HQp , p = 1, . . . , n + 1, will represent

an Anderson impurity model H (t ) for τ̃p−1 � t < τ̃p, with

H (t ) = Himp + Hbath + Hint.

Here, Himp =
∑

σ εd (t )ndσ + U (t )nd↑nd↓ describes an im-

purity with a local level of energy εd (t ) and a Coulomb

repulsion U (t ) between opposite spin electrons in the local

level. The impurity interacts with free conduction electrons

described by Hbath =
∑

kσ ǫkσ c
†
kσ ckσ via a hybridization in-

teraction Hint = V
∑

kσ (c
†
kσdσ + H.c.). The time dependence

enters through either a time-dependent level position εd (t ) or a

time-dependent Coulomb repulsion U (t ) and will be specified

in detail for each switching protocol later. We shall consider

a time-independent hybridization V throughout this paper,

and we shall denote the constant single-particle broadening

of the resonant level by Ŵ = πρV 2, where ρ = 1/2D is the

constant density of states per spin of the conduction electrons

and D = 1 is the half-bandwidth.

The quench Hamiltonians, HQp , p = 1, . . . , n + 1, are

solved by using Wilson’s NRG approach [44,46] to yield the
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FIG. 1. A system driven from an initial to a final state via

a sequence of quantum quenches at times τ̃0 = 0, τ̃1, . . . , τ̃n with

evolution according to {HQp } in the time step τ̃p−1 � t < τ̃p with

HQ0 = H i and HQn+1 = H f . The time, τ̃n =
∑n

p=1 τp , to switch

from H i to H f via the sequence of quantum quenches will be called

the switch-on time (or, equivalently, the pulse duration).

eigenstates and eigenvalues of each quench Hamiltonian at

each NRG iteration m = m0, . . . , N , where N is the longest

chain diagonalized and m0 (typically 6 or 7) is the first itera-

tion at which high-energy states are discarded. In the iterative

diagonalization of the Hamiltonians HQp , p = 1, . . . , n + 1

we retain either of order Ns = 1000 states per iteration or

truncate the spectrum at a fixed energy Ecut = 24 (measured

in units of the characteristic scale tm ∼ �
−(m−1)/2 of the mth

truncated Hamiltonian H
Qp

m , where � > 1 is the logarithmic

discretization parameter [46]). We make use of the complete

basis set of discarded states [31] {|lpepmp〉Qp
} of HQp where

lp labels the eigenstate, ep the environment variable, and mp

the truncated Hamiltonian at NRG iteration m = mp, and the

following decomposition of unity applies:

∑

lpepmp

|lpepmp〉Qp Qp
〈lpepmp| = 1.

In addition, in evaluating thermodynamic expectation values

of observables, we used the full density matrix representa-

tion [57] for the initial state density matrix ρ of H i and

the z-averaging procedure [58,59] to reduce discretization

effects.

With the above preliminaries, we can now write down the time evolution O(t ) of a local observable Ô at time t ∈ [τ̃p, τ̃p+1).

In the notation of Refs. [37,38] we have

O(t ) =
∑

mp+1lp+1ep+1

Qp+1
〈lp+1ep+1mp+1|e

−iH
Qp+1 (t−τ̃p )e−iHQp τp · · · e−iHQ1 τ1ρeiHQ1 τ1 · · · eiHQp τpeiH

Qp+1 (t−τ̃p )Ô|lp+1ep+1mp+1〉Qp+1
,

(1)

with ρ the full density matrix [57] of the initial state Hamiltonian Hi at inverse temperature β = 1/T . For the simplest case with

τ̃1 > t � τ̃0, the single quench result for O(t ) applies [31]. For the next simplest case with τ̃2 > t � τ̃1, we have

O(t ) =
∑

m2l2e2

Q2
〈l2e2m2|e

−iHQ2 (t−τ̃1 )e−iHQ1 τ1ρeiHQ1 τ1eiHQ2 (t−τ̃1 )Ô|l2e2m2〉Q2

=
∑

m2l2e2

∑

m′
2l

′
2e

′
2

∑

m1l1e1

∑

m′
1l

′
1e

′
1

Q2
〈l2e2m2|e

−iHQ2 (t−τ̃1 )|l1e1m1〉Q1 Q1
〈l1e1m1|e

−iHQ1 τ1ρeiHQ1 τ1 |l′1e
′
1m

′
1〉Q1

× Q1
〈l′1e

′
1m

′
1|e

iHQ2 (t−τ̃1 )|l′2e
′
2m

′
2〉Q2 Q2

〈l′2e
′
2m

′
2|Ô|l2e2m2〉Q2

,

where three decompositions of unity 1 =
∑

lem |lem〉〈lem| have been employed. Next, we use the identity [60]

∑

m2l2e2

∑

m′
2l

′
2e

′
2

∑

m1l1e1

∑

m′
1l

′
1e

′
1

=
∑

m

∑

e1e
′
1e2e

′
2

/∈K1K
′
1K2K

′
2∑

r1s1r2s2

(2)

to convert the multiple-shell sums over the four different Wilson chains in the above expression for O(t ) into a single shell-

diagonal (restricted) sum involving kept states (K1K
′
1, etc. [32]), obtaining

O(t ) =
∑

m

/∈K1K
′
1K2K

′
2∑

r1s1r2s2

∑

e1e
′
1e2e

′
2

Q2
〈r2e2m|e−iHQ2 (t−τ̃1 )|r1e1m〉Q1 Q1

〈r1e1m|e−iHQ1 τ1ρeiHQ1 τ1 |s1e
′
1m〉Q1

× Q1
〈s1e

′
1m|eiHQ2 (t−τ̃1 )|s2e

′
2m〉Q2 Q2

〈s2e
′
2m|Ô|r2e2m〉Q2

=
∑

m

/∈K1K
′
1K2K

′
2∑

r1s1r2s2

Sm
r2r1

∑

e

Q1
〈r1em|ρ|s1em〉Q1

e
−i(Em

r1
−Em

s1
)τ1Sm

s1s2
Om

s2r2
e
−i(Em

r2
−Em

s2
)(t−τ̃1 )

=
∑

m

/∈K1K
′
1K2K

′
2∑

r1s1r2s2

Sm
r2r1

ρi→Q1

m (r1, s1)e−i(Em
r1

−Em
s1

)τ1Sm
s1s2

Om
s2r2

e
−i(Em

r2
−Em

s2
)(t−τ̃1 )

. (3)
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Here, Sm
r2r1

is the overlap matrix element which is defined

as Sm
r2r1

× δe2,e1
= Q2

〈r2e2m|r1e1m〉Q1
, Om

s2r2
is the matrix el-

ements of Ô that Om
s2r2

δe′
2,e2

= Q2
〈s2e

′
2m|Ô|r2e2m〉Q2

, and

ρi→Q1
m (r1, s1) =

∑

e Q1
〈r1em|ρ|s1em〉Q1

is the reduced ini-

tial state density matrix (of Hi) projected onto the state

of HQ1 [37]. Furthermore, in the second line of Eq. (3),

use has been made of the NRG approximation in the form

eiHQ1 τ1 |r1e1m〉Q1
≈ e

iEm
r1

τ1 |r1e1m〉Q1
, which, except in the

limit of a vanishing switch-on time τ1 = 0, incurs a finite error

in the time evolution, so Eq. (3) should be understood as being

approximate.

For the general case with t ∈ [τ̃p, τ̃p+1), we obtain, by

using a generalization of Eq. (2) [60],

O(t ) =
∑

m

/∈K1K1···KpK ′
pKp+1K

′
p+1

∑

r1s1···rpsprp+1sp+1

Sm
rp+1rp

· · · Sm
r2r1

ρi→Q1

m (r1, s1)

× e
−i(Em

r1
−Em

s1
)τ1Sm

s1s2
· · · e−i(Em

rp
−Em

sp
)τpSm

spsp+1

× Om
sp+1rp+1

e
−i(Em

rp+1
−Em

sp+1
)(t−τ̃p )

, (4)

where, again, the use of the NRG approximation, implies that

this expression should be understood, in general, as being

approximate. When p = n, Eq. (4) applies for all t � τ̃n,

and can be used to extract the long-time limit t → ∞ of

observables, both for a finite or an infinite switch-on time τ̃n.

Below, we shall discuss the accuracy of the long-time limit of

observables O(t → ∞) as a function of the switch-on time τ̃n

(or, equivalently the pulse duration). For zero switch-on time,

τ̃n = 0 (or equivalently τ1 = τ2 = · · · = τp=n = 0), the above

expression can be converted into that for a single quench [37].

For the special case that Ô is the identity operator, Ô = Î ,

we have, using Om
sp+1,rp+1

= 〈sp+1m|rp+1m〉 = δrp+1,sp+1
,

1 =
∑

m

/∈K1K
′
1···KpK ′

pKp+1
∑

r1s1···rpsprp+1

Sm
rp+1rp

· · · Sm
r2r1

ρi→Q1

m (r1, s1)

× e
−i(Em

r1
−Em

s1
)τ1Sm

s1s2
· · · e−i(Em

rp
−Em

sp
)τpSm

sprp+1
. (5)

This expression should, in general, be understood as approx-

imate due to the use of the NRG approximation in its deriva-

tion. As a result, the right-hand side of this expression will de-

viate somewhat from 1 and will depend on time in a stepwise

fashion through the condition t ∈ [τ̃p, τ̃p+1). Equation (5) is

analogous to the trace of the projected density matrix defined

in Refs. [37,38], therefore the calculation of 〈Î 〉 by using this

equation will be referred to in the following as the trace of the

projected density matrix, and will be denoted by Tr[ρi→f (t )]

with t ∈ [τ̃p, τ̃p+1). For t > τ̃n, it is independent of time and

denoted by Tr[ρi→f (τ̃n)]. The deviation of Tr[ρi→f (τ̃n)] from

1 represents the cumulative error in the trace due to the NRG

approximation and will be investigated in detail in the next

section. In the limit of a vanishing switch-on time, equivalent

to a single quench, the NRG approximation is inoperative and

the resulting expression 1 = Tr[ρi→Q1 ] is satisfied exactly, as

shown explicitly in Ref. [37].

Since we also wish to compare the present formalism with

our previous multiple quench TDNRG formalism [37,38], a

few words are in order about the latter. In Refs. [37,38],

we expressed the time evolution of an observable Ô for t ∈
[τ̃p, τ̃p+1) as

O(t ) =

/∈KK ′
∑

mrs

ρ
i→Qp+1

rs (m, τ̃p )e−i(Em
r −Em

s )(t−τ̃p )Om
sr ,

with ρ
i→Qp+1

rs (m, τ̃p )

=
∑

e

Qp+1
〈rem|e−iHQp τp · · · e−iHQ1 τ1

× ρeiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1
, (6)

a projected density matrix depending on each time step τ̃p that

was calculated recursively in terms of reduced density ma-

trices and the so-called generalized overlap matrix elements

defined as

Sm
risQp+1

(τ̃p )δee′ = i〈rem|eiHQ1 τ1 · · · eiHQp τp |se′m〉Qp+1
. (7)

These generalized overlap matrix elements are also calculated

recursively via two recursion relations: (i) the matrix elements

at τp are calculated recursively from the matrix elements of

the previous time step at τp−1, as shown in Eqs. (19) and

(20) in Ref. [38], and (ii) the matrix elements of shell m are

also calculated recursively from the matrix elements of shell

(m − 1) as in Eq. (21) of Ref. [38]. Due to these recursion

relations, the projected density matrix includes errors from the

NRG approximation not only from terms involving intrashell

excitations Em
rq

− Em
sq

but also from terms involving intershell

excitations Em
rq

− En
sq

with n = m0,m0 + 1, . . . , m − 1 [61].

In the present approach, by using a general form of Eq. (2),

we can derive Eq. (4) in which no recursion relation is needed

(only ordinary overlap matrix elements Sm
rp+1rp

appear), and the

projected density matrix includes only terms with intrashell

excitations Em
rq

− Em
sq

. Since the NRG eigenvalues are only

approximations to the true eigenvalues, the projected density

matrix in the previous approach includes more approximated

terms than that in the present approach. For this reason, we

expect, and find that the present approach is more accurate

than the previous approach. In addition, a recursive evaluation

of the generalized overlap matrix elements of the previous

approach is numerically more demanding than that of the

ordinary overlap matrix elements, so the present approach is

also numerically more efficient and easier to implement than

the approach of Ref. [38].

Finally, within the multiple quench formalism of

Refs. [37,38], the limit of infinite switch-on time τ̃n → +∞
is impossible to take analytically, and that formalism is

restricted to numerical evaluations at finite switch-on times.

Within the present formalism, on the other hand, it becomes

straightforward to take this limit (see Sec. IV). This, in turn,

allows for an adiabatic switching of the system between

an arbitrary initial state and an arbitrary final state, thereby

improving the long-time limit of observables.

III. COMPARISON WITH THE PREVIOUS APPROACH

In this section we illustrate the improvement of the present

multiple-quench TDNRG approach over our previous ap-

proach for two specific situations: (i) for the time evolution
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FIG. 2. Results for the resonant level model subject to square

periodic driving. (a) The square periodic driving used for εd (t )/Ŵ,

where εd (t ) is the local level position and Ŵ the hybridization

strength in the resonant level model. (b) Percentage deviation,

δ(Tr[ρi→f (t )]), of the trace of the projected density matrix away

from 1 vs tŴ in the present approach (dashed line) and the previous

multiple-quench approach of Ref. [38] (solid line). (c) Occupation

number nd (t ) vs tŴ in the present approach (dashed line), the previ-

ous approach (solid line), and, in the exact analytic approach (dash-

dotted line). (d) Percentage deviation, δnd (t ), of the occupation

number vs tŴ, from the exact analytic result, in the previous approach

(solid line) and in the present approach (dashed-dotted line). NRG

parameters: � = 1.6, Ns = 900 kept states in each iteration, and

Nz = 16 values for the z averaging.

of the occupation number 〈nd (t )〉 in the resonant level model

[62] under a square periodic driving of the local level and (ii)

for the convergence of the long-time limit of the occupation

number 〈nd (t → ∞)〉 with respect to increasing the switch-on

time in the interacting Anderson impurity model following a

linear ramp of the local level.

In Fig. 2(b), we show the error in Tr[ρi→f (t )] versus

time and the time evolution of the occupation number in

the resonant level model (RLM) under a square periodic

driving of the local level εd from −Ŵ to Ŵ and back with a

period of 2/Ŵ [Fig. 2(a)]. The results of the present approach

are compared with those from our previous multiple-quench

formalism in Ref. [38] as well as with the exact analytic

result for the RLM. From these comparisons, we see that the

previous formalism yields a trace for the projected density

matrix (Tr[ρi→f (t )]) which deviates increasingly away from

1 after each quench. Similarly, the discontinuity in the time

evolution of the occupation number at the boundaries of the

time steps is clearly visible for times tŴ � 5 in the results

from the previous formalism. Within the present formalism,

FIG. 3. Anderson model subject to a linear ramp pulse. (a) A

single large quench for εd (t )/Ŵ is replaced by a linear ramp pulse

and the latter is approximated by a finite sequence of n > 1 small

quenches of total duration τ̃n (the switch-on time). The system is

switched from the mixed valence regime with εd (t < 0) = 0 and

U = 12Ŵ to the symmetric Kondo regime with εd (t � τ̃n) = −U/2

and U = 12Ŵ within time τ̃n. (b) Occupation number in the long-

time limit nd (t → ∞) vs τ̃nŴ in the present approach (dashed-dotted

line) compared to the approach of Ref. [38] (solid line). For each

fixed τ̃n, the linear ramp pulse is approximated by a sequence of up

to 100 small quenches, with the number of quenches chosen such

that nd (t → ∞) is converged. The inset shows the corresponding

percentage error in the trace of the projected density matrix

δ(Tr[ρi→f (τ̃n)]) vs τ̃nŴ of the present (dot-dashed line) and previous

(solid line) multiple-quench approach. NRG parameters: � = 4,

Ecut = 24, and Nz = 8 values for the z averaging.

the deviation of Tr[ρi→f (t )] away from 1 is reduced by a fac-

tor of more than 10 relative to that in the previous formalism

after one period, and the discontinuity in the time evolution of

the occupation number also decreases by a similar factor. The

present formalism results in a time evolution for nd which is

significantly closer to the exact analytic one than that from the

previous formalism, as illustrated in Figs. 2(c) and 2(d).

Figure 3 shows results for the Anderson model with a

constant Coulomb repulsion Ui = Uf in which the system is

switched from the mixed valence regime initially (εi
d = 0) to

the symmetric Kondo regime in the final state (ε
f

d = −Uf /2):

in particular, we show the occupation number in the long-

time limit nd (t → ∞) and the corresponding percentage error

in the trace of the projected density matrix as a function

of the switch-on time τ̃n, comparing the results also with

those from our previous approach. We see that nd (t → ∞)

initially increases as the switch-on time increases in both

approaches. However, while the occupation number in the

previous approach eventually overshoots the expected value of

1 in the final state and only begins to drop close to the correct
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value at very long switch-on times, the present approach

converges monotonically to the correct value already at rela-

tively short switch-on times without overshooting [Fig. 3(b)].

The difference to the expected value at the longest switch-on

time τ̃nŴ = 100 is less than 10−4 for the present improved

approach. This significant improvement is also observed for

the cumulative (t = ∞ > τ̃n) error in Tr[ρi→f (τ̃n)]. While

this is at most ∼0.6% in the previous approach, the present

formalism yields a value of less than 0.01% in the whole range

of switch-on times [see inset to Fig. 3(b)].

In general, then, the present formalism for multiple

quenches results in an improved time evolution for observ-

ables, including an improved long-time limit of observables

and smaller discontinuities of observables after each quench.

In the next section, we present and discuss the extension of

this formalism to strictly infinite switch-on times.

IV. INFINITE SWITCH-ON TIME AND ACCURATE

RESULTS IN THE LONG-TIME LIMIT

In this section, we extend the formalism in Sec. II to the in-

finite switch-on time limit and apply this to the long-time limit

of the spectral function and local thermodynamic observables

in the interacting Anderson impurity model. We show that the

resulting long-time limit of the spectral function (Sec. IV A)

and local thermodynamic observables (Sec. IV B) approach

their expected values in the equilibrium final state to high

accuracy. This conclusion is further supported by a (multiple-

quench) exact diagonalization study of the local level occupa-

tion number in the resonant level model (Sec. IV C).

The limit of an infinite switch-on time, τ̃n → +∞, can be

implemented in Eq. (4) by applying the restriction that r1 =
s1, r2 = s2, . . . , rn = sn, resulting in

O(t > τ̃n → ∞)

=
∑

m

/∈K1···KnKn+1K
′
n+1∑

r1...rnrn+1sn+1

Sm
rn+1rn

· · · Sm
r2r1

ρi→Q1

m (r1, r1)

× Sm
r1r2

· · · Sm
rnsn+1

Om
sn+1rn+1

e
−i(Em

rn+1
−Em

sn+1
)(t−τ̃n )

, (8)

where in the above t − τ̃n may still be finite. In the long-time

limit, infinitely long after the last quench, O(t − τ̃n → ∞) is

calculated by applying the restriction that rn+1 = sn+1 to the

above equation.

A few remarks are in order concerning the implementation

of the infinite switch-on time limit and the infinite time

limits in the above expression. In the limit of an infinite

switch-on time, only the nonoscillatory part of terms such as

limτp→∞ e
i(Em

rp
−Em

sp
)τp in Eq. (4) are finite, and yield δEm

rp
,Em

sp

(see Ref. [32]). In the absence of degeneracies, we then

have δEm
rp

,Em
sp

= δrp,sp
, i.e., the restriction rp = sp used in

Eq. (8). Since we implemented the U(1) charge and SU(2)

spin symmetries explicitly for the Anderson model calcula-

tions in this work, all degeneracies are correctly taken into

account. In general, however, when fewer symmetries are

implemented, or when additional degeneracies arise during

the renormalization group flow, conditions such as rp = sp in

our expressions for the infinite switch-on time limit should

be replaced by δEm
rp

,Em
sp

. The latter equal energy condition is

then implemented, in practice, by considering contributions

from all states such that |Em
rp

− Em
sp

|/tm ≪ 1, with tm the low-

energy scale at iteration m. The same considerations apply to

the long-time limit t − τ̃n → ∞ of Eq. (8). In specific cases,

such as for the results in Figs. 5 and 6, we explicitly verified

that both the above ways of implementing the equal energy

restriction gave results for the long-time limit of observables

lying within 10−8 of each other at all temperatures.

Similarly, we have from Eq. (5) for the trace of the

projected density matrix in the limit τ̃p → +∞ with t ∈
[τ̃p, τ̃p+1),

I =
∑

m

/∈K1···KpKp+1
∑

r1···rprp+1

Sm
rp+1rp

· · · Sm
r2r1

ρi→Q1

m (r1, r1)Sm
r1r2

· · · Sm
rprp+1

.

(9)

This equality is not satisfied exactly due to the use of the NRG

approximation inherent in its derivation, but as demonstrated

in Sec. III, the deviation of the trace from 1 is small. The small

error is another reflection of the error in the long-time limit of

an observable within TDNRG.

A. Application to the long-time limit of the spectral function

The general expression for the time-dependent local spec-

tral function A(ω, t ) of the Anderson impurity model for

times after the pulse (i.e., for t > τ̃n) within the present

multiple-quench TDNRG approach is derived in Appendix A.

We use this here in the limit τ̃n → ∞ to discuss the long-time

limit of the spectral function A(ω) = A(ω, t → ∞).

Figures 4(a) and 4(b) show A(ω) for a system that is

gradually driven (a) from an uncorrelated symmetric initial

state to a correlated symmetric Kondo regime and (b) from a

mixed valence regime to the symmetric Kondo regime. We use

a logarithmic energy axis to focus attention on the long-time

limit of the low-energy Kondo resonance at |ω| � TK. For

both switching protocols, we show results for 1, 2, 8, and

32 quenches and also the results expected in the equilibrium

final state and the single-quench result obtained by using the

correlation self-energy � to improve the calculation of A(ω)

[63]. In Fig. 4(a), the single quench result without the use

of the correlation self-energy has a Kondo resonance which

achieves only 60% of its Friedel sum rule value of 1 at

ω = 0 [64], while the improvement in the single-quench result

upon using the correlation self-energy to calculate A(ω) is

not sufficient to reduce the error in the Friedel sum rule to

below 20%. In addition, the single-quench TDNRG result for

spectral functions suffer from additional substructures within

the Kondo resonance at |ω| � TK, noticeable in Fig. 4(a), and

discussed in detail elsewhere [40]. On the other hand, a real

improvement in the low-energy Kondo resonance is observed

within the multiple-quench formalism upon increasing the

number of quenches, with eight quenches already yielding

acceptable spectral functions with a less than 10% error in

the Friedel sum rule and with 32 quenches yielding highly

accurate results approaching the expected value of the spectral

function in the equilibrium final state. The substructures are

also absent for this number of quenches.
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FIG. 4. Normalized spectral function, πŴA(ω), vs normalized

frequency, ω/Ŵ, in the long-time limit and infinite switch-on time

for 2, 8, and 32 quenches compared to that from the single-quench

TDNRG with (1 quench +�) and without (1 quench) the use

of the self-energy [63]. Also shown is the expected value of the

spectral function in the equilibrium final state. (a) For switching

from the noninteracting with εi
d = U i = 0 to the interacting system

with ε
f

d = −U f /2, U f = 12Ŵ. (b) For switching from the mixed

valence regime with εi
d = 0 and U i = 12Ŵ to the symmetric Kondo

regime with ε
f

d = −U f /2, U f = 12Ŵ. Ŵ = 10−3D, and D = 1 is

the half-bandwidth. Calculations were for essentially zero tempera-

ture T = 10−4TK , with TK the Kondo temperature in the final state.

NRG parameters: � = 4, Ecut = 24, and Nz = 8 values for the z

averaging.

Similar conclusions also hold for the second type of

switching shown in Fig. 4(b), in which the system is switched

from the mixed valence to the symmetric Kondo regime.

While signatures of the initial state particle-hole asymmetry

in A(ω) are present in the final state spectral function for

the 1, 2, and 8 quench results, this asymmetry is eliminated

after 32 quenches, restoring the correct symmetry of the final

state spectral function, which again also recovers accurately

the expected equilibrium spectral function in the final state.

In Appendix B we also consider the reverse of the quenches

shown in Figs. 4(a) and 4(b), i.e., from a correlated to an

uncorrelated state and from a symmetric Kondo regime to a

mixed valence regime. We find also for these quenches that

the long-time limit of the spectral function approaches the

expected one in the equilibrium final state upon increasing the

number of quenches, with 32 quenches sufficing to obtain a

similar accuracy as for the quenches in Figs. 4(a) and 4(b).

Clearly, the quality of the TDNRG spectral functions at

long times, a key input within the scattering states NRG

[33,34], can be much improved by replacing the single-quench

TDNRG in Refs. [33,34] by the present multiple-quench TD-

NRG. The use of the latter for this purpose should allow, in the

future, for an accurate study of nonequilibrium steady states

for bias voltages on scales of order at least TK. Furthermore,

the high accuracy with which Tr[ρi→f (τ̃n)] = 1 is satisfied

in the present formalism (see inset to Fig. 3), guarantees

that the spectral sum rule
∫

dω A(ω) = 1 is satisfied to a

correspondingly high accuracy.

B. Application to the long-time limit

of thermodynamic observables

For further insight into the multiple quench TDNRG re-

sults, we also look at the results for thermodynamic observ-

ables in the long-time limit at finite temperatures. The percent-

age errors of the occupation number and the double occupancy

in the long-time limit when the system is switched from the

mixed valence regime to the symmetric Kondo regime are

shown in Figs. 5(a) and 5(b), while the errors in the case of

the reverse switching, i.e., from the symmetric Kondo regime

to the mixed valence regime, are shown in Figs. 5(c) and

5(d). The percentage error is defined by the relative difference

between the expectation value of the local observable in the

long-time limit and the expected thermodynamic value in the

final state, defined and denoted by δO(t → +∞) = 100 ×
O(t→+∞)−Of

Of
. In Fig. 5(a), the error of the occupation number

in the case of a single quench is finite with an extremum

at high temperature, and disappears only at the very highest

temperature, T > D. With a larger number of quenches, 2 and

8, the absolute value of the error significantly decreases at low

temperatures T � TK; the extrema also decrease in magnitude

and remain at around the same temperature as observed in the

results for a single quench. In the case of 31 quenches, the

error at low temperatures is closer to 0 than in the other cases,

and the extremum is also smaller but still finite. In Fig. 5(b),

the error of the double occupancy in the case of single quench

is positive at low temperatures T � TK and negative at higher

temperatures. With an increasing number of quenches, the

magnitude of the error at T � TK is significantly reduced,

approaching 0, while the error around the high-temperature

extremum changes less significantly, and converges to a finite

value with increasing number of quenches. In the case of the

reverse switching [Figs. 5(c) and 5(d)], the side shoulders at

temperatures in the range of 7–40TK are also observed in addi-

tion to the extrema at higher temperature. With an increasing

number of quenches, the errors decrease at low temperatures

T � TK, and the errors around the high-temperature peaks

also decrease but still remain finite. The dependence of the

error in the trace of the projected density matrices on the

logarithmic discretization parameter � is discussed in Ap-

pendix D. The main finding there is that the error decreases

with increasing � for a sufficiently large number of quenches.
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FIG. 5. The percentage error in the expectation value of local

observables in the long-time limit vs rescaled temperature T/TK

after a switch from the mixed valence to symmetric Kondo regime,

(a) and (b), and a switch from the symmetric Kondo regime to

the mixed valence regime, (c) and (d), with initial and final state

parameters shown in the legends. The system is switched by applying

1, 2, 8, or 31 quenches on the local level and/or local Coulomb

term, either, only on εd in (a) and (b) or on both εd and U in (c)

and (d). (a) and (c) show the errors of the occupation numbers in the

long-time limit; (b) and (d) show the errors in the double occupancy.

TK is the Kondo temperature of the symmetric system, Ŵ = 10−3D,

and D = 1 is the half-bandwidth. The calculations are for � = 4.0,

Ecut = 24, and Nz = 4 values were used for the z averaging. The

results are normalized by the numerically calculated trace of the

projected density matrix at each temperature.

As mentioned in our previous paper [37], the error in the

long-time limit not only depends on the size of the quench

but also on the largest incoherent excitation of the final

state, εmax
inc = max(|εf |, |εf + Uf |,Ŵ). Apparently, the TD-

NRG calculation for multiple quenches may overcome the

first problem of quench size by dividing it into a sequence

of smaller ones, but not the second problem since εmax
inc is

the same in calculations for both single quench and multiple

quenches. It suggests that the observed extrema at finite

temperature may originate from the incoherent excitations.

These results suggest that the TDNRG calculation for mul-

tiple quenches systematically improves the long-time limit of

observables in the low-temperature regime T � TK, but not

in the high-temperature regime for temperatures of order the

scale of the highest-energy incoherent excitation. Neverthe-

less, the TDNRG presented is promising for the study of the

Kondo effect out of equilibrium, where the interest is primar-

ily on low temperatures where a Kondo effect is present, and

on the observed destruction of the Kondo resonance when

the bias voltage is increased to values comparable to and

above TK.

C. TDNRG vs exact diagonalization

Finally, we apply the TDNRG formalism for multiple

quenches with infinite switch-on time to the resonant level

model, i.e., the Anderson impurity model with U = 0, and

compare the results to those of the ED study.

FIG. 6. The percentage error in the expectation value of the

occupation number in the long-time limit, δnd (t → ∞), vs the

rescaled temperature, T/Ŵ, calculated by the TDNRG (symbols)

and the exact diagonalization approach (solid lines) applied to the

resonant level model. (a) Dependence of the single-quench results on

� for fixed final state level position ε
f

d = 0 and a fixed quench size,

�εd = ε
f

d − εi
d = 6Ŵ. (b) Dependence of the single-quench results

on the final state level position ε
f

d for � = 1.6 and a fixed quench

size �εd = 6Ŵ. (c) and (d) show the dependence of the results

on the number of quenches for two final state level positions: (c)

ε
f

d = 0Ŵ and (d), ε
f

d = 10Ŵ, with fixed � = 1.6 and fixed quench

size �εd = 6Ŵ. NRG parameters: Ns = 900 kept states per NRG

iteration, and Nz = 8 values for the z averaging. The TDNRG results

are normalized by the numerically calculated trace of the projected

density matrix at each temperature. For typical errors in the latter, see

Appendix D.

In the ED calculations, the conduction band is also dis-

cretized logarithmically using the parameter � as in the NRG

calculations, and the resulting model is likewise mapped onto

an impurity coupled to a semi-infinite chain. The ED is

applied to finite size initial and final state Hamiltonians of

length N , corresponding to the longest chain diagonalized

within a TDNRG approach [65], and one can then determine

from the resulting single-particle levels and eigenstates the

time evolution of observables following a quench. We have

generalized the formulas for the time evolution of observables

within this approach, to the case of multiple quenches, and

for more details we refer the reader to Appendix E. In the

ED calculation, there is no truncation of states as in the NRG

calculation, and one can therefore obtain approximation-free

results (no NRG approximation enters). The method cannot

be applied to the Anderson impurity model with U 
= 0,

however. Since it also solves the same discrete model as in

TDNRG, it can be used as a benchmark to check the TDNRG

calculations [36,65]. In addition, it can be formulated for

infinite switch-on times (Appendix E); this allows us to verify

that an infinite switch-on time improves the long-time limit of

thermodynamic observables, as in the present multiple quench

TDNRG approach.

In Fig. 6, we show the percentage error of the occupation

number in the long-time limit calculated by both TDNRG

and ED. Clearly, the TDNRG results almost overlap with

the ED results. The difference is primarily visible at high
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temperatures and originates from the use of the truncation

in the TDNRG (and absent in ED). The ED calculation for a

single quench in Figs. 6(a) and 6(b) exhibits the same problem

as in the TDNRG calculation, i.e., even at low temperature,

where both methods yield largely the same result, this long-

time result exhibits a finite “error.” More precisely, this is

largely not an error as such, but represents a deviation from

the expected value for a continuum bath due to the use of

a logarithmically discretized bath. The latter is known to

prevent perfect thermalization of observables to their expected

values at long times within the single-quench TDNRG ap-

proach [36,40,42]. The percentage error, at low temperature,

is thus finite in both methods at low temperature and it

shows an extremum at high temperature in both methods. Any

remaining difference between the TDNRG and ED results can

be attributed to truncation errors in the TDNRG approach

(which can be seen to be small). Thus, the logarithmically

discretized bath, and the consequent imperfect thermalization,

is the main source of error in the long-time limit of observ-

ables. Arguably this imperfect thermalization should not be

termed an error of the single-quench TDNRG approach, but a

feature of this approach. With decreasing � in Fig. 6(a), i.e.,

better approximating the continuum bath, the error decreases

significantly, and the extremum is still located at around the

same high temperature. By changing ε
f

d in Fig. 6(b), we

can determine the relationship between the extremum at high

temperature and the incoherent excitations, as defined above

in Sec. IV B. For example, when ε
f

d = 0Ŵ, then εmax
inc = Ŵ,

we have that the corresponding extremum appears exactly at

T = Ŵ. With larger ε
f

d , we have εmax
inc = ε

f

d , and the extremum

appears at higher temperatures around ε
f

d , but not exactly, due

to the interference with the lower energy scale Ŵ.

Turning now to the TDNRG and ED results for multiple

quenches, we show in Figs. 6(c) and 6(d) the percentage error

in the long-time limit of the occupation number for two equal

sized quenches with two different values of ε
f

d and in the

limit of an infinite switch-on time. With increasing number

of quenches, the errors in both cases are reduced close to 0

at low temperature but the errors around the high-temperature

extremum at T ≈ εmax
inc = ε

f

d are always finite. In Fig. 6(c),

εmax
inc equals the lowest energy scale of the final system; then

the extrema in the results with different number of quenches

are almost the same.

In summary, the ED calculations for both single and mul-

tiple quenches without any approximation also show errors in

the occupation numbers in the long-time limit, with extrema

at high temperatures as in TDNRG. These are largely due

to the imperfect thermalization in the long-time limit due

to the use of a logarithmically discretized bath. Dividing a

large quench into a sequence of smaller ones with an infinite

switch-on time, implemented in the ED calculations presented

here, also improves the long-time limit of observables at low

temperatures as in TDNRG. Any remaining small difference

between the ED and TDNRG results is due to the use of

truncation in the latter (absent in the former). This further

supports the precision of the multiple quench TDNRG results

presented here for infinite switch-on times.

V. CONCLUSIONS

In this paper, we developed an alternative multiple-quench

TDNRG formalism for general pulses, which reduces further

the effect of the NRG approximation on the time evolution of

observables. We showed this by comparison with the previous

approach [37,38]. Specifically, the trace of the projected den-

sity matrix versus time remains closer to 1 and the discontinu-

ities in the time evolution of observables following quenches

are significantly reduced. Both approaches improve the long-

time limit of observables for increasing switch-on times, i.e.,

with increasing adiabaticity of the switching from initial to

final state. However, the present approach shows a monotonic

and faster convergence of the long-time limit with increasing

switch-on time than the previous approach. Moreover, the

present formalism allows the limit of infinite switch-on time

to be straightforwardly taken analytically, which is impossible

in the previous formalism.

We also formulated the spectral function within the formal-

ism, both for finite and infinite switch-on times. For infinite

switch-on time, we showed that the long-time limit of the

zero-temperature spectral function approached its value in the

equilibrium final state with high accuracy: the Friedel sum

rule was satisfied to within a few percent, which is to be

compared with the much larger error of order typically 15%

in the single-quench approach [34,40]. Additional features,

at |ω| � TK, found in the single-quench approach [40], are

absent in the present approach. Hence, the present approach

yields accurate results for the long-time limit of spectral func-

tions for systems switched between an arbitrary initial and

an arbitrary final state, overcoming the problems encountered

within the single-quench approach [40,42]. This improve-

ment is particularly important for an accurate description of

nonequilibrium steady states of quantum impurity systems,

since methods such as the scattering states NRG approach [33]

for addressing steady states rely on an accurate time-evolved

spectral function in the long-time limit. In the future, we

therefore plan to use the present multiple quench formalism

to address nonequilibirum steady states in quantum impurity

systems and to compare with known exact results [50–52] and

other approaches [22,33,55].
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APPENDIX A: SPECTRAL FUNCTION IN THE LONG-TIME LIMIT

In order to evaluate the spectral function, we require an expression for the retarded two-time Green’s function GBC (t +
t ′, t ) = −iθ (t ′) Tr{ρ̂[B̂(t + t ′), Ĉ(t )]s} within TDNRG. We work within the complete basis set and full density matrix approach
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[57,66,67]. Since we are here only interested in the long-time limit after the last quench, t + t ′ > t > τ̃n, we can write

GBC (t + t ′, t )

= −iθ (t ′) Tr{ρ̂[B̂(t + t ′), Ĉ(t )]s}

= −iθ (t ′) Tr
{

ρ̂
[

eiH f (t+t ′−τ̃n ) · · · eiHQ1 τ1B̂e−iHQ1 τ1 · · · e−iH f (t+t ′−τ̃n ), eiH f (t−τ̃n ) · · · eiHQ1 τ1Ĉe−iHQ1 τ1 · · · e−iH f (t−τ̃n )
]

s

}

= −iθ (t ′) Tr
{

e−iH f (t−τ̃n ) · · · e−iHQ1 τ1 ρ̂eiHQ1 τ1 · · · eiHf (t−τ̃n )
[

eiH f t ′B̂e−iH f t ′ , Ĉ
]

s

}

. (A1)

Inserting decompositions of unity 1 =
∑

lem |lem〉〈lem| in the above gives

GBC (t + t ′, t )

= −iθ (t ′)
∑

lem
l′e′m′

l′′e′′m′′

∑

l1e1m1
l′
1
e′
1
m′

1

· · ·
∑

lnenmn
l′ne′nm′

n

f 〈lem|e−iH f (t−τ̃n )e−iHQn τn |lnenmn〉Qn
· · · Q2

〈l2e2m2|e
−iHQ1 τ1 |l1e1m1〉Q1

× Q1
〈l1e1m1|ρ̂|l′1e

′
1m

′
1〉Q1 Q1

〈l′1e
′
1m

′
1|e

iHQ1 τ1 |l′2e
′
2m

′
2〉Q2

· · · Qn
〈l′ne

′
nm

′
n|e

iHQn τneiHf (t−τ̃n )|l′e′m′〉f

×
(

f 〈l′e′m′|eiH f t ′B̂e−iH f t ′ |l′′e′′m′′〉f f 〈l′′e′′m′′|Ĉ|lem〉f + f 〈l′e′m′|Ĉ|l′′e′′m′′〉f f 〈l′′e′′m′′|eiH f t ′B̂e−iH f t ′ |lem〉f
)

. (A2)

Converting the multiple-shell summations over discarded states into a shell-diagonal restricted sum [60] leads to

GBC (t + t ′, t ) = − iθ (t ′)
∑

m

/∈KK ′K ′′K1K1···KnK
′
n∑

rsqr1s1···rnsn

Sm
rrn

· · · Sm
r2r1

ρi→Q1

m (r1, s1)e−i(Em
r1

−Em
s1

)τ1Sm
s1s2

· · · e−i(Em
rn

−Em
sn

)τnSm
sns

e−i(Em
r −Em

s )(t−τ̃n )

×
(

Bm
sqe

i(Em
s −Em

q )t ′Cm
qr + Cm

sqB
m
qre

i(Em
q −Em

r )t ′
)

. (A3)

Fourier transforming this Green’s function with respect to the time difference t ′ results in

GBC (ω, t ) =
∑

m

/∈KK ′K ′′K1K
′
1···KnK

′
n∑

rsqr1s1···rnsn

Sm
rrn

· · · Sm
r2r1

ρi→Q1

m (r1, s1)e−i(Em
r1

−Em
s1

)τ1Sm
s1s2

· · · e−i(Em
rn

−Em
sn

)τnSm
sns

e−i(Em
r −Em

s )(t−τ̃n )

×

(
Bm

sqC
m
qr

ω + Em
s − Em

q + iη
+

Cm
sqB

m
qr

ω + Em
q − Em

r + iη

)

. (A4)

Then we have the spectral function A(ω, t ) = −Im[G(ω, t )]/π , in the long-time limit t − τ̃n → +∞ for a finite switch-on time,

i.e., for finite τp=1,...,n,

A(ω, t → ∞) =
∑

m

/∈KK ′K1K1···KnK
′
n∑

rqr1s1···rnsn

Sm
rrn

· · · Sm
r2r1

ρi→Q1

m (r1, s1)e−i(Em
r1

−Em
s1

)τ1Sm
s1s2

· · · e−i(Em
rn

−Em
sn

)τnSm
snr

×
[

Bm
rqC

m
qrδ

(

ω + Em
r − Em

q

)

+ Cm
sqB

m
qrδ

(

ω + Em
q − Em

r

)]

, (A5)

and the long-time limit for an infinite switch-on time, i.e., τp=1,...,n → +∞,

A(ω, t → ∞) =
∑

m

/∈KK ′K1···Kn∑

rqr1···rn

Sm
rrn

· · · Sm
r2r1

ρi→Q1

m (r1, r1)Sm
r1r2

· · · Sm
rnr

[

Bm
rqC

m
qrδ

(

ω + Em
r − Em

q

)

+ Cm
sqB

m
qrδ

(

ω + Em
q − Em

r

)]

,

(A6)

where the restrictions r1 = s1, . . . , rn = sn and r = s used in the above should more generally be replaced by

δEr1
,Es1

, . . . , δErn ,Esn
and δEr ,Es

[68].

APPENDIX B: SPECTRAL FUNCTION IN THE

LONG-TIME LIMIT: REVERSE QUENCHES

We show in Figs. 7(a) and 7(b) the long-time limit

of the spectral function A(ω) = A(ω, t → ∞) for 1, 2, 8,

and 32 quenches for the reverse of the two quenches in

Figs. 4(a) and 4(b). While A(ω) exhibits significant substruc-

tures are low energies for a small number of quenches, these

substructures are rapidly suppressed upon increasing the num-

ber of quenches. For 32 quenches, we recover in both cases

the expected equilibrium spectral function of the final state

to high accuracy. Thus, the Friedel sum rule in Fig. 7(a) is

recovered to within 5%, while for the quench into the mixed

valence regime in Fig. 7(b) it is recovered to within 3%. In the

latter, the mixed valence resonance is correctly renormalized

155107-10



TIME-DEPENDENT NUMERICAL RENORMALIZATION … PHYSICAL REVIEW B 98, 155107 (2018)

FIG. 7. Normalized spectral function [πŴA(ω)] vs normalized

frequency ω/Ŵ in the long-time limit and infinite switch-on time

for 2, 8, and 32 quenches compared to that from the single-quench

TDNRG. Also shown is the expected value of the spectral function

in the equilibrium final state. (a) Switching from an interacting

system with εi
d = −U i/2, U i = 12Ŵ to a noninteracting system

with ε
f

d = U f = 0. (b) Switching from a system in the symmetric

Kondo regime with εi
d = −U i/2, U i = 12Ŵ to one in the mixed

valence regime with ε
f

d = 0 and U f = 12Ŵ. Ŵ = 10−3D, and D = 1

is the half-bandwidth. Calculations were for essentially zero tem-

perature T = 10−4TK , with TK the Kondo temperature in the initial

state. NRG parameters: � = 4, Ecut = 24, and Nz = 8 values for the

z averaging.

upwards from its bare value at ω = ε
f

d = 0 to ω = ε̃
f

d ≈ Ŵ

by the Coulomb interaction, while the higher lying satellite

peak is also correctly located at ω ≈ ε
f

d + Uf ≈ 12Ŵ [69].

Similarly, for the quench in Fig. 7(a) we see that A(ω) for

32 quenches recovers the noninteracting resonant level of the

final state with halfwidth at half maximum given by Ŵ and

centered at zero energy. In conclusion, for a sufficient number

of quenches, the present formalism for an infinite switch-on

time is able to describe the long-time limit of the spectral

function to high accuracy. In the next section, we discuss the

effects of a finite switch-on time on A(ω) in the long-time

limit.

FIG. 8. Spectral function in the long-time limit A(ω, t → ∞)

vs ω/Ŵ for different finite switch-on times τ = τ̃n. Also shown

is the expected equilibrium spectral function in the final state. (a)

Switching from a noninteracting regime with εi
d = 0 and U i = 0

to an interacting Kondo regime with ε
f

d = −U f /2 and U f = 12Ŵ.

(b) Switching from the mixed valence regime with εi
d = 0 and U i =

12Ŵ to the symmetric Kondo regime with ε
f

d = −U f /2 and U f =
12Ŵ. Ŵ = 10−3D, with D = 1 the half-bandwidth. Calculations were

for essentially zero temperature, T = 10−4TK , with TK the Kondo

temperature in the initial state. NRG parameters: � = 4, Ecut = 24,

and Nz = 8 values for the z averaging.

APPENDIX C: SPECTRAL FUNCTION IN THE

LONG-TIME LIMIT: DEPENDENCE ON A FINITE

SWITCH-ON TIME

We show in Fig. 8 the dependence of the long-time limit of

the spectral function A(ω) = A(ω, t → ∞) on the switch-on

time τ = τ̃n. As with the occupation number, the long-time

limit of the spectral function also improves and approaches the

expected value in the equilibrium final state with increasing

switch-on time τ . In the case of switching from the asym-

metric to symmetric Kondo regime [Fig. 8(b)], the spectral

function in the long-time limit becomes more symmetric with

increasing τ . However, the spectral function shows small

additional structures at |ω| < TK even when the switch-on

time τ exceeds the timescale 1/TK for the formation of the

Kondo resonance [40,70]. The error in the spectral sum rule
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∫ +∞
−∞ dω A(ω, t → ∞) = 1 is violated in this case by 0.1%.

This is attributed to the NRG approximation in the multiple

quench formalism, which results in a cumulative error in

the trace of the projected density matrix and a disconti-

nuity in the time evolution of observables, as discussed

in Sec. III. In the case of switching from a noninteract-

ing to an interacting system [Fig. 8(a)], the long-time limit

of the spectral function lies closer to the expected result

than that for the second switching protocol in Fig. 8(b)

for each τ . However, at the longest τ , additional structures

within the Kondo resonance at |ω| < TK are still visible,

attributable to the more pronounced effect of the NRG ap-

proximation in the case of finite switch-on times. The above

findings support the conclusion that accurate results can

be obtained for the long-time limit of the spectral func-

tion within TDNRG by replacing a single large quench by

a sequence of smaller quenches and switching the system

slowly from one state to the other (i.e., with increasing τ ).

The most accurate results are obtained in the limit of a large

number of quenches and for τ → ∞ as supported by the

results in Sec. IV A and Appendix B.

APPENDIX D: CALCULATIONS WITH DIFFERENT �

We show in Fig. 9 the errors of the traces of the projected

density matrices versus temperature for calculations with

different �. In the calculations with � = 1.6 in Figs. 9(a)

and 9(c), the percentage errors are as large as approximately

3% at low temperatures, and they exhibit an extremum of up to

approximately 6% at high temperatures. The absolute values

of the errors are nonmonotonic with respect to the number

FIG. 9. Percentage deviation of the trace of the projected density

matrix away from 1 for different � vs rescaled temperature T/TK .

Upper panels (a) and (c) are for � = 1.6. Lower panels (b) and (d)

are for � = 4. Left panels (a) and (b) were for switching from the

mixed valence regime with εi
d = 0 and U i = 12Ŵ to the symmetric

Kondo regime with ε
f

d = −U f /2 and U f = 12Ŵ, while the right

panels (c) and (d) were for switching from the symmetric Kondo

regime with εi
d = −U i/2 and U i = 12Ŵ to the mixed valence regime

with ε
f

d = 0 and U f = 12Ŵ. Ŵ = 10−3D, with D = 1 the half-

bandwidth. TK is the Kondo temperature of the symmetric Kondo

state. NRG parameters for the calculations with � = 1.6: Nz = 8

and the number of kept states Ns = 900. For the calculations with

� = 4, the parameters are the same as those in Fig. 5.

of quenches. For the case of 31 quenches, the errors in both

quenches are similar, suggesting that for the large number of

quenches the error strongly depends on the quench size. The

calculations with � = 4 [Figs. 9(b) and 9(d)] result in much

smaller errors than for � = 1.6. Except for the error in the

case of two quenches in Fig. 9(b) which is up to around 1.5%,

all the errors for a larger number of quenches are less than

0.6%. We conclude that the formalism presented here results

in smaller errors in the trace of the projected density matrices

with increasing values of �.

APPENDIX E: EXACT DIAGONALIZATION OF THE

RESONANT LEVEL MODEL WITH MULTIPLE

QUENCHES

The real-time revolution of a system, modeled by the RLM,

following a single quench can be calculated via ED [65]. In

this appendix, we derive results for the time dependence of

the occupation number of the resonant level model, 〈nd (t )〉,
and also for the time dependence of the conduction electron

orbital occupation numbers, first for the case of two quenches,

and then generalizing this to the case of an arbitrary number

of quenches. The presented expressions are then free of any

approximations, both for finite and infinite switch-on times.

In the ED of the RLM, the conduction band is also dis-

cretized with the parameter � and mapped onto a Wilson

chain as in the NRG calculation. Then we have the following

discrete model:

HN (t ) = εd (t )d†d + V (t )(d†c0 + c
†
0d )

+

N−2
∑

n=0

tn(c†ncn+1 + c
†
n+1cn)

= �α†M (t )�α, (E1)

with �α = (
d
c0...

), �α† = (d† c
†
0 · · ·), and

M (t ) =










εd (t ) V 0 0

V 0 t0 0

0 t0 0
. . .

0 0
. . .

. . .










. (E2)

M (t ) can be diagonalized as follows:

M (t ) = U (t )†diag(ǫ1(t ), ǫ2(t ), · · ·)U (t ). (E3)

FIG. 10. A system driven from the initial H i to the final state H f

via the intermediate state described by {HQ}.
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H (t ) is represented in Fig. 10, in which each Hamiltonian

can be expressed in the diagonal form as H i =
∑

n ǫi
nf

i†
n f i

n ,

HQ =
∑

n ǫQ
n f

Q†
n f Q

n , and H f =
∑

n ǫ
f
n f

f †
n f

f
n with

f i
n =

∑

l

U i
nlαl, f Q

n =
∑

l

U
Q
nl αl, f f

n =
∑

l

U
f

nlαl,

(E4)

f i†
n =

∑

l

α
†
l U

i†
nl , f Q†

n =
∑

l

α
†
l U

Q†
nl , f f †

n =
∑

l

α
†
l U

f †
nl .

(E5)

The operator for the occupation number of site m is defined as

nm = α†
mαm =

{

d†d, m = 0;

c
†
m−1cm−1, m > 1.

(E6)

The expectation value of the occupation number is given by

〈nm(t > τ )〉 = Tr[ρ(t )nm], (E7)

with ρ(t ) = e−iH f (t−τ )e−iHQτρ0e
iHQτ eiH f (t−τ ) and ρ0 =

e−βHi

Z
= e−β

∑

n ǫinf
i†
n f i

n

Tr[e−β
∑

n ǫinf
i†
n f i

n ]
. Then we have

〈nm(t > τ )〉 = Tr
[

e−iH f (t−τ )e−iHQτρ0e
iHQτ eiH f (t−τ )nm

]

= Tr
[

e−iHQτρ0e
iHQτ eiH f (t−τ )nme−iH f (t−τ )

︸ ︷︷ ︸

nm(t−τ )

]

.

(E8)

nm(t − τ ) = eiH f (t−τ ) α†
mαm

︸ ︷︷ ︸

nm

e−iH f (t−τ )

=
∑

nn′

eiH f (t−τ )f f †
n f

f

n′ e
−iH f (t−τ )Uf

nmU
f †
mn′

=
∑

nn′

eiH f (t−τ )f f †
n e−iH f (t−τ )

︸ ︷︷ ︸

f
f †
n (t−τ )

× eiH f (t−τ )f
f

n′ e
−iH f (t−τ )

︸ ︷︷ ︸

f
f

n′ (t−τ )

Uf
nmU

f †
mn′

=
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ )f f †
n f

f

n′ U
f
nmU

f †
mn′ , (E9)

since ∂(t−τ )f
f
n (t − τ ) = i[H f , f

f
n (t − τ )] = −iǫ

f
n f

f
n (t −

τ ), then f
f
n (t − τ ) = e−iǫ

f
n (t−τ )f

f
n . Substituting (E9) into

(E8), we have

〈nm(t > τ )〉

=
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ )Tr
[

e−iHQτρ0e
iHQτf f †

n f
f

n′

]

Uf
nmU

f †
mn′

=
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ )
∑

kk′

Tr
[

e−iHQτρ0e
iHQτf

Q†
k f

Q
k′

]

× (UQUf †)kn(Uf UQ†)n′k′Uf
nmU

f †
mn′ . (E10)

Similarly, the trace in (E10) is evaluated as follows:

Tr
[

e−iHQτρ0e
iHQτf

Q†
k f

Q
k′

]

= Tr
[

ρ0e
iHQτf

Q†
k e−iHQτ eiHQτf

Q
k′ e−iHQτ

]

= ei(ǫ
Q
k −ǫ

Q

k′ )τ Tr
[

ρ0f
Q†
k f

Q
k′

]

= ei(ǫ
Q
k −ǫ

Q

k′ )τ
∑

qq ′

Tr
[

ρ0f
i†
q f i

q ′

]

︸ ︷︷ ︸

f (ǫi
q )δqq′

(U iUQ†)qk (UQU i†)k′q ′

= ei(ǫ
Q
k −ǫ

Q

k′ )τ
∑

q

f
(

ǫi
q

)

(U iUQ†)qk (UQU i†)k′q, (E11)

in which f (ǫi
q ) is the Fermi-Dirac distribution. Substituting

(E11) into (E10), we have

〈nm(t > τ )〉 =
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ )
∑

kk′

ei(ǫ
Q
k −ǫ

Q

k′ )τ

×
∑

q

f
(

ǫi
q

)

(U iUQ†)qk (UQU i†)k′q

× (UQUf †)kn(Uf UQ†)n′k′Uf
nmU

f †
mn′ . (E12)

Defining

n
i→Q
kk′ =

∑

q

f
(

ǫi
q

)

(U iUQ†)qk (UQU i†)k′q, (E13)

n
i→f

nn′ =
∑

kk′

ei(ǫ
Q
k −ǫ

Q

k′ )τn
i→Q
kk′ (UQUf †)kn(Uf UQ†)n′k′, (E14)

we have

〈nm(t > τ )〉 =
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ )n
i→f

nn′ Uf
nmU

f †
mn′ . (E15)

These expressions are generalized to the case of (p + 1)

quenches as follows:

n
i→f

nn′ =
∑

kk′

ei(ǫ
Qp

k −ǫ
Qp

k′ )τpn
i→Qp

kk′ (UQpUf †)kn(Uf UQp†)n′k′ ,

(E16)

which is a recursion relation allowing ni→Qp to be derived

from ni→Qp−1 , and consequently from ni→Q1 determined in

(E13). Finally, we have for the occupation of the orbitals

〈nm(t > τ̃p )〉 =
∑

nn′

ei(ǫ
f
n −ǫ

f

n′ )(t−τ̃p )n
i→f

nn′ Uf
nmU

f †
mn′ , (E17)

with τ̃p =
∑p

i=1 τi .

The formulas above for the real-time dynamics following

multiple quenches within ED is without any approximation.

The extension to the case of an infinite switch-on time, τ̃p →
+∞, is obtained straightforwardly by setting k = k′ in (E16),

and yields the time-independent long-time limit result for the

occupation numbers.
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