000852914 001__ 852914
000852914 005__ 20210129235221.0
000852914 0247_ $$2doi$$a10.1103/PhysRevLett.121.147203
000852914 0247_ $$2ISSN$$a0031-9007
000852914 0247_ $$2ISSN$$a1079-7114
000852914 0247_ $$2ISSN$$a1092-0145
000852914 0247_ $$2Handle$$a2128/19755
000852914 0247_ $$2pmid$$apmid:30339435
000852914 0247_ $$2WOS$$aWOS:000446391700010
000852914 0247_ $$2altmetric$$aaltmetric:43453605
000852914 037__ $$aFZJ-2018-05701
000852914 082__ $$a550
000852914 1001_ $$0P:(DE-HGF)0$$aKarnad, G. V.$$b0
000852914 245__ $$aModification of Dzyaloshinskii-Moriya-Interaction-Stabilized Domain Wall Chirality by Driving Currents
000852914 260__ $$aCollege Park, Md.$$bAPS$$c2018
000852914 3367_ $$2DRIVER$$aarticle
000852914 3367_ $$2DataCite$$aOutput Types/Journal article
000852914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1588688077_22660
000852914 3367_ $$2BibTeX$$aARTICLE
000852914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000852914 3367_ $$00$$2EndNote$$aJournal Article
000852914 520__ $$aWe measure and analyze the chirality of Dzyaloshinskii-Moriya-interaction (DMI) stabilized spin textures in multilayers of Ta|Co20F60B20|MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin-orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for its emergence, and explore the possibility of its manifestation in the framework of recent theoretical predictions of DMI modifications due to spin currents.
000852914 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000852914 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x1
000852914 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000852914 536__ $$0G:(DE-Juel1)jara0062_20130501$$aTopological transport in real materials from ab initio (jara0062_20130501)$$cjara0062_20130501$$fTopological transport in real materials from ab initio$$x3
000852914 588__ $$aDataset connected to CrossRef
000852914 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, F.$$b1$$ufzj
000852914 7001_ $$0P:(DE-HGF)0$$aMartinez, E.$$b2
000852914 7001_ $$0P:(DE-HGF)0$$aLo Conte, R.$$b3
000852914 7001_ $$0P:(DE-HGF)0$$aGubbiotti, G.$$b4
000852914 7001_ $$0P:(DE-HGF)0$$aSchulz, T.$$b5
000852914 7001_ $$0P:(DE-HGF)0$$aSenz, S.$$b6
000852914 7001_ $$0P:(DE-HGF)0$$aOcker, B.$$b7
000852914 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b8$$eCorresponding author$$ufzj
000852914 7001_ $$0P:(DE-HGF)0$$aKläui, M.$$b9
000852914 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.121.147203$$gVol. 121, no. 14, p. 147203$$n14$$p147203$$tPhysical review letters$$v121$$x1079-7114$$y2018
000852914 8564_ $$uhttps://juser.fz-juelich.de/record/852914/files/PhysRevLett.121.147203.pdf$$yOpenAccess
000852914 8564_ $$uhttps://juser.fz-juelich.de/record/852914/files/PhysRevLett.121.147203.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000852914 909CO $$ooai:juser.fz-juelich.de:852914$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000852914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b1$$kFZJ
000852914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b8$$kFZJ
000852914 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000852914 9141_ $$y2018
000852914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000852914 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000852914 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000852914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000852914 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000852914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000852914 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000852914 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000852914 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000852914 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000852914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000852914 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000852914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000852914 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000852914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000852914 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000852914 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000852914 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000852914 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000852914 980__ $$ajournal
000852914 980__ $$aVDB
000852914 980__ $$aI:(DE-Juel1)IAS-1-20090406
000852914 980__ $$aI:(DE-Juel1)PGI-1-20110106
000852914 980__ $$aI:(DE-82)080009_20140620
000852914 980__ $$aI:(DE-82)080012_20140620
000852914 980__ $$aUNRESTRICTED
000852914 9801_ $$aFullTexts