001     852914
005     20210129235221.0
024 7 _ |a 10.1103/PhysRevLett.121.147203
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/19755
|2 Handle
024 7 _ |a pmid:30339435
|2 pmid
024 7 _ |a WOS:000446391700010
|2 WOS
024 7 _ |a altmetric:43453605
|2 altmetric
037 _ _ |a FZJ-2018-05701
082 _ _ |a 550
100 1 _ |a Karnad, G. V.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Modification of Dzyaloshinskii-Moriya-Interaction-Stabilized Domain Wall Chirality by Driving Currents
260 _ _ |a College Park, Md.
|c 2018
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588688077_22660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We measure and analyze the chirality of Dzyaloshinskii-Moriya-interaction (DMI) stabilized spin textures in multilayers of Ta|Co20F60B20|MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin-orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for its emergence, and explore the possibility of its manifestation in the framework of recent theoretical predictions of DMI modifications due to spin currents.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20090701)
|0 G:(DE-Juel1)jiff40_20090701
|c jiff40_20090701
|f Topological transport in real materials from ab initio
|x 1
536 _ _ |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)
|0 G:(DE-Juel1)jiff13_20131101
|c jiff13_20131101
|f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures
|x 2
536 _ _ |a Topological transport in real materials from ab initio (jara0062_20130501)
|0 G:(DE-Juel1)jara0062_20130501
|c jara0062_20130501
|f Topological transport in real materials from ab initio
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Freimuth, F.
|0 P:(DE-Juel1)130643
|b 1
|u fzj
700 1 _ |a Martinez, E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lo Conte, R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gubbiotti, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schulz, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Senz, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ocker, B.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 8
|e Corresponding author
|u fzj
700 1 _ |a Kläui, M.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1103/PhysRevLett.121.147203
|g Vol. 121, no. 14, p. 147203
|0 PERI:(DE-600)1472655-5
|n 14
|p 147203
|t Physical review letters
|v 121
|y 2018
|x 1079-7114
856 4 _ |u https://juser.fz-juelich.de/record/852914/files/PhysRevLett.121.147203.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/852914/files/PhysRevLett.121.147203.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:852914
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21