001     856019
005     20210129235222.0
024 7 _ |a 10.1111/nph.15442
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a pmid:30277578
|2 pmid
024 7 _ |a WOS:000453883200030
|2 WOS
024 7 _ |a altmetric:48345799
|2 altmetric
024 7 _ |a 2128/22878
|2 Handle
037 _ _ |a FZJ-2018-05704
041 _ _ |a English
082 _ _ |a 580
100 1 _ |0 0000-0003-4446-0415
|a Yang, Bo
|b 0
|e Corresponding author
245 _ _ |a TRM4 is essential for cellulose deposition in Arabidopsis seed mucilage by maintaining cortical microtubule organization and interacting with CESA3552
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1568880531_23433
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin‐rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown. Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure. TRM4 is preferentially accumulated in the SCE cells at the stage of mucilage biosynthesis. The loss of TRM4 results in compact seed mucilage capsules, aberrant mucilage cellulosic structure, short cellulosic rays and disorganized cellulose microfibrils in mucilage. The defects could be rescued by transgene complementation of trm4 alleles. Probably, this is a consequence of a disrupted organization of cortical microtubules, observed using fluorescently tagged tubulin proteins in trm4 SCE cells. Furthermore, TRM4 proteins co‐aligned with microtubules and interacted directly with CELLULOSE SYNTHASE 3 in two independent assays. Together, the results indicate that TRM4 is essential for microtubule array organization and therefore correct cellulose orientation in the SCE cells, as well as the establishment of the subsequent mucilage architecture.
536 _ _ |0 G:(DE-HGF)POF3-552
|a 552 - Engineering Cell Function (POF3-552)
|c POF3-552
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-582
|a 582 - Plant Science (POF3-582)
|c POF3-582
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-583
|a 583 - Innovative Synergisms (POF3-583)
|c POF3-583
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)156477
|a Voiniciuc, Cătălin
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Fu, Lanbao
|b 2
700 1 _ |0 P:(DE-Juel1)128807
|a Dieluweit, Sabine
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)173960
|a Klose, Holger
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)145719
|a Usadel, Björn
|b 5
|u fzj
773 _ _ |0 PERI:(DE-600)1472194-6
|a 10.1111/nph.15442
|n 2
|p 881-895
|t The new phytologist
|v 221
|x 0028-646X
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/856019/files/Yang_et_al-2019-New_Phytologist.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856019/files/Yang_et_al-2019-New_Phytologist.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:856019
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128807
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)173960
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145719
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-582
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Plant Science
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-583
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Innovative Synergisms
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NEW PHYTOL : 2017
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b NEW PHYTOL : 2017
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21