000856028 001__ 856028
000856028 005__ 20220930130158.0
000856028 0247_ $$2doi$$a10.3389/fnhum.2018.00414
000856028 0247_ $$2Handle$$a2128/19880
000856028 0247_ $$2WOS$$aWOS:000447445400001
000856028 0247_ $$2altmetric$$aaltmetric:50388186
000856028 037__ $$aFZJ-2018-05708
000856028 082__ $$a610
000856028 1001_ $$0P:(DE-Juel1)169625$$aSchmidt, Claudia$$b0$$eCorresponding author
000856028 245__ $$aPreserved but less efficient control of response interference after unilateral lesions of the striatum.
000856028 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000856028 3367_ $$2DRIVER$$aarticle
000856028 3367_ $$2DataCite$$aOutput Types/Journal article
000856028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544110081_16462
000856028 3367_ $$2BibTeX$$aARTICLE
000856028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856028 3367_ $$00$$2EndNote$$aJournal Article
000856028 520__ $$aPrevious research on the neural basis of cognitive control processes has mainly focused on cortical areas, while the role of subcortical structures in cognitive control is less clear. Models of basal ganglia function as well as clinical studies in neurodegenerative diseases suggest that the striatum (putamen and caudate nucleus) modulates the inhibition of interfering responses and thereby contributes to an important aspect of cognitive control, namely response interference control. To further investigate the putative role of the striatum in the control of response interference, 23 patients with stroke-induced lesions of the striatum and 32 age-matched neurologically healthy controls performed a unimanual version of the Simon task. In the Simon task, the correspondence between stimulus location and response location is manipulated so that control over response interference can be inferred from the reaction time costs in incongruent trials. Results showed that stroke patients responded overall slower and more erroneous than controls. The difference in response times (RTs) between incongruent and congruent trials (known as the Simon effect) was smaller in the ipsilesional/-lateral hemifield, but did not differ significantly between groups. However, in contrast to controls, stroke patients exhibited an abnormally stable Simon effect across the reaction time distribution indicating a reduced efficiency of the inhibition process. Thus, in stroke patients unilateral lesions of the striatum did not significantly impair the general ability to control response interference, but led to less efficient selective inhibition of interfering responses.
000856028 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000856028 7001_ $$0P:(DE-Juel1)145382$$aTimpert, D. C.$$b1
000856028 7001_ $$0P:(DE-HGF)0$$aArend, I.$$b2
000856028 7001_ $$0P:(DE-Juel1)131745$$aVossel, S.$$b3
000856028 7001_ $$0P:(DE-Juel1)131718$$aDovern, A.$$b4
000856028 7001_ $$0P:(DE-HGF)0$$aSaliger, J.$$b5
000856028 7001_ $$0P:(DE-HGF)0$$aKarbe, H.$$b6
000856028 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b7
000856028 7001_ $$0P:(DE-HGF)0$$aHenik, A.$$b8
000856028 7001_ $$0P:(DE-Juel1)131748$$aWeiss-Blankenhorn, Peter$$b9
000856028 773__ $$0PERI:(DE-600)2425477-0$$a10.3389/fnhum.2018.00414$$p414$$tFrontiers in human neuroscience$$v12$$x1662-5161$$y2018
000856028 8564_ $$uhttps://juser.fz-juelich.de/record/856028/files/2018-0112678-4.pdf
000856028 8564_ $$uhttps://juser.fz-juelich.de/record/856028/files/fnhum-12-00414.pdf$$yOpenAccess
000856028 8564_ $$uhttps://juser.fz-juelich.de/record/856028/files/fnhum-12-00414.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856028 8564_ $$uhttps://juser.fz-juelich.de/record/856028/files/2018-0112678-4.pdf?subformat=pdfa$$xpdfa
000856028 8767_ $$82018-0112678-4$$92018-09-25$$d2018-12-06$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2256.75 USD
000856028 909CO $$ooai:juser.fz-juelich.de:856028$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000856028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169625$$aForschungszentrum Jülich$$b0$$kFZJ
000856028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131745$$aForschungszentrum Jülich$$b3$$kFZJ
000856028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
000856028 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131748$$aForschungszentrum Jülich$$b9$$kFZJ
000856028 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000856028 9141_ $$y2018
000856028 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856028 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856028 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856028 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT HUM NEUROSCI : 2017
000856028 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856028 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856028 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856028 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856028 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856028 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000856028 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856028 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856028 920__ $$lyes
000856028 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000856028 9801_ $$aFullTexts
000856028 980__ $$ajournal
000856028 980__ $$aVDB
000856028 980__ $$aI:(DE-Juel1)INM-3-20090406
000856028 980__ $$aUNRESTRICTED
000856028 980__ $$aAPC