000856029 001__ 856029
000856029 005__ 20240711114128.0
000856029 0247_ $$2doi$$a10.1088/1361-6455/aad6d0
000856029 0247_ $$2ISSN$$a0022-3700
000856029 0247_ $$2ISSN$$a0368-3508
000856029 0247_ $$2ISSN$$a0953-4075
000856029 0247_ $$2ISSN$$a1361-6455
000856029 0247_ $$2ISSN$$a1747-3713
000856029 0247_ $$2ISSN$$a1747-3721
000856029 0247_ $$2Handle$$a2128/19772
000856029 0247_ $$2WOS$$aWOS:000442624100001
000856029 0247_ $$2altmetric$$aaltmetric:46945793
000856029 037__ $$aFZJ-2018-05709
000856029 082__ $$a530
000856029 1001_ $$0P:(DE-HGF)0$$aDarby-Lewis, D.$$b0$$eCorresponding author
000856029 245__ $$aSynthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas
000856029 260__ $$aBristol$$bIOP Publ.84206$$c2018
000856029 3367_ $$2DRIVER$$aarticle
000856029 3367_ $$2DataCite$$aOutput Types/Journal article
000856029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539071499_17379
000856029 3367_ $$2BibTeX$$aARTICLE
000856029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856029 3367_ $$00$$2EndNote$$aJournal Article
000856029 520__ $$aA theoretical model for isotopologues of beryllium monohydride, BeH, BeD and BeT, A ${}^{2}{\rm{\Pi }}$ to X ${}^{2}{{\rm{\Sigma }}}^{+}$ visible and X ${}^{2}{{\rm{\Sigma }}}^{+}$ to X ${}^{2}{{\rm{\Sigma }}}^{+}$ infrared rovibronic spectra is presented. The MARVEL procedure is used to compute empirical rovibronic energy levels for BeH, BeD and BeT, using experimental transition data for the X ${}^{2}{{\rm{\Sigma }}}^{+}$, A ${}^{2}{\rm{\Pi }}$, and C ${}^{2}{{\rm{\Sigma }}}^{+}$ states. The energy levels from these calculations are then used in the program Duo to produce a potential energy curve for the ground state, X ${}^{2}{\rm{\Sigma }}$, and to fit an improved potential energy curve for the first excited state, A ${}^{2}{\rm{\Pi }}$, including a spin–orbit coupling term, a Λ-doubling state to state (A–X states) coupling term, and Born–Oppenheimer breakdown terms for both curves. These, along with a previously computed ab initio dipole curve for the X and A states are used to generate vibrational-rotational wavefunctions, transition energies and A-values. From the transition energies and Einstein coefficients, accurate assigned synthetic spectra for BeH and its isotopologues are obtained at given rotational and vibrational temperatures. The BeH spectrum is compared with a high resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolution spectra from JET giving effective vibrational and rotational temperatures. Full A–X and X–X line lists are given for BeH, BeD and BeT and provided as supplementary data on the ExoMol website.
000856029 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000856029 588__ $$aDataset connected to CrossRef
000856029 7001_ $$00000-0002-4994-5238$$aTennyson, J.$$b1
000856029 7001_ $$0P:(DE-HGF)0$$aLawson, K. D.$$b2
000856029 7001_ $$0P:(DE-HGF)0$$aYurchenko, S. N.$$b3
000856029 7001_ $$0P:(DE-HGF)0$$aStamp, M. F.$$b4
000856029 7001_ $$0P:(DE-HGF)0$$aShaw, A.$$b5
000856029 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6
000856029 773__ $$0PERI:(DE-600)1363381-8$$a10.1088/1361-6455/aad6d0$$gVol. 51, no. 18, p. 185701 -$$n18$$p185701 -$$tJournal of physics / B Atomic, molecular and optical physics B$$v51$$x1361-6455$$y2018
000856029 8564_ $$uhttps://juser.fz-juelich.de/record/856029/files/Darby-Lewis_2018_J._Phys._B__At._Mol._Opt._Phys._51_185701.pdf$$yOpenAccess
000856029 8564_ $$uhttps://juser.fz-juelich.de/record/856029/files/Darby-Lewis_2018_J._Phys._B__At._Mol._Opt._Phys._51_185701.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856029 909CO $$ooai:juser.fz-juelich.de:856029$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
000856029 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000856029 9141_ $$y2018
000856029 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000856029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS B-AT MOL OPT : 2017
000856029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856029 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856029 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856029 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856029 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856029 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856029 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000856029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856029 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000856029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856029 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000856029 9801_ $$aFullTexts
000856029 980__ $$ajournal
000856029 980__ $$aVDB
000856029 980__ $$aUNRESTRICTED
000856029 980__ $$aI:(DE-Juel1)IEK-4-20101013
000856029 981__ $$aI:(DE-Juel1)IFN-1-20101013