Home > Publications database > Structural Prediction of the Dimeric Form of the Mammalian Translocator Membrane Protein TSPO: A Key Target for Brain Diagnostics > print |
001 | 856050 | ||
005 | 20240625095128.0 | ||
024 | 7 | _ | |a 10.3390/ijms19092588 |2 doi |
024 | 7 | _ | |a 1422-0067 |2 ISSN |
024 | 7 | _ | |a 1661-6596 |2 ISSN |
024 | 7 | _ | |a 2128/19793 |2 Handle |
024 | 7 | _ | |a pmid:30200318 |2 pmid |
024 | 7 | _ | |a WOS:000449988100124 |2 WOS |
024 | 7 | _ | |a altmetric:47629757 |2 altmetric |
037 | _ | _ | |a FZJ-2018-05717 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Zeng, Juan |0 P:(DE-Juel1)171596 |b 0 |
245 | _ | _ | |a Structural Prediction of the Dimeric Form of the Mammalian Translocator Membrane Protein TSPO: A Key Target for Brain Diagnostics |
260 | _ | _ | |a Basel |c 2018 |b Molecular Diversity Preservation International |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1544104308_16464 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Positron emission tomography (PET) radioligands targeting the human translocatormembrane protein (TSPO) are broadly used for the investigations of neuroinflammatory conditionsassociated with neurological disorders. Structural information on the mammalian proteinhomodimers—the suggested functional state of the protein—is limited to a solid-state nuclearmagnetic resonance (NMR) study and to a model based on the previously-deposited solution NMRstructure of the monomeric mouse protein. Computational studies performed here suggest thatthe NMR-solved structure in the presence of detergents is not prone to dimer formation and isfurthermore unstable in its native membrane environment. We, therefore, propose a new modelof the functionally-relevant dimeric form of the mouse protein, based on a prokaryotic homologue.The model, fully consistent with solid-state NMR data, is very different from the previous predictions.Hence, it provides, for the first time, structural insights into this pharmaceutically-important targetwhich are fully consistent with experimental data. |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 0 |
536 | _ | _ | |a 531 - Condensed Matter and Molecular Building Blocks (POF3-531) |0 G:(DE-HGF)POF3-531 |c POF3-531 |f POF III |x 1 |
536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 2 |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Guareschi, Riccardo |0 P:(DE-Juel1)172064 |b 1 |
700 | 1 | _ | |a Damre, Mangesh |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Cao, Ruyin |0 P:(DE-Juel1)168598 |b 3 |
700 | 1 | _ | |a Kless, Achim |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Neumaier, Bernd |0 P:(DE-Juel1)166419 |b 5 |
700 | 1 | _ | |a Bauer, Andreas |0 P:(DE-Juel1)131672 |b 6 |u fzj |
700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 7 |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 8 |
700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.3390/ijms19092588 |g Vol. 19, no. 9, p. 2588 - |0 PERI:(DE-600)2019364-6 |n 9 |p 2588 - |t International journal of molecular sciences |v 19 |y 2018 |x 1422-0067 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856050/files/Zeng%2C%20J.a%2Cb_Structural-prediction-of-the-dimeric-form-of-the-mammalian-translocator-membrane-protein-TSPO-A-key-target-for-brain-diagnosticsArticleOpen-Access_2018.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856050/files/Zeng%2C%20J.a%2Cb_Structural-prediction-of-the-dimeric-form-of-the-mammalian-translocator-membrane-protein-TSPO-A-key-target-for-brain-diagnosticsArticleOpen-Access_2018.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:856050 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171596 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172064 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)166419 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131672 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)165199 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)145614 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)145921 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |2 G:(DE-HGF)POF3-500 |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Science and Technology of Nanosystems |1 G:(DE-HGF)POF3-530 |0 G:(DE-HGF)POF3-531 |2 G:(DE-HGF)POF3-500 |v Condensed Matter and Molecular Building Blocks |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 3 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J MOL SCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|