000856106 001__ 856106
000856106 005__ 20220930130158.0
000856106 0247_ $$2doi$$a10.1371/journal.pone.0201013
000856106 0247_ $$2Handle$$a2128/19796
000856106 0247_ $$2pmid$$apmid:30161125
000856106 0247_ $$2WOS$$aWOS:000443388900007
000856106 0247_ $$2altmetric$$aaltmetric:47594270
000856106 037__ $$aFZJ-2018-05752
000856106 082__ $$a610
000856106 1001_ $$0P:(DE-Juel1)161242$$aSchall, Melissa$$b0$$ufzj
000856106 245__ $$aA 3D two-point method for whole-brain water content and relaxation time mapping: Comparison with gold standard methods
000856106 260__ $$aSan Francisco, California, US$$bPLOS$$c2018
000856106 3367_ $$2DRIVER$$aarticle
000856106 3367_ $$2DataCite$$aOutput Types/Journal article
000856106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539322581_3271
000856106 3367_ $$2BibTeX$$aARTICLE
000856106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856106 3367_ $$00$$2EndNote$$aJournal Article
000856106 520__ $$aQuantitative imaging of the human brain is of great interest in clinical research as it enables the identification of a range of MR biomarkers useful in diagnosis, treatment and prognosis of a wide spectrum of diseases. Here, a 3D two-point method for water content and relaxation time mapping is presented and compared to established gold standard methods. The method determines free water content, H2O, and the longitudinal relaxation time, T1, quantitatively from a two-point fit to the signal equation including corrections of the transmit and receive fields. In addition, the effective transverse relaxation time, T2*, is obtained from an exponential fit to the multi-echo signal train and its influence on H2O values is corrected. The phantom results obtained with the proposed method show good agreement for H2O and T1 values with known and spectroscopically measured values, respectively. The method is compared in vivo to already established gold standard quantitative methods. For H2O and T2* mapping, the 3D two-point results were compared to a measurement conducted with a multiple-echo GRE with long TR and T1 is compared to results from a Look-Locker method, TAPIR. In vivo results show good overall agreement between the methods, but some systematic deviations are present. Besides an expected dependence of T2* on voxel size, T1 values are systematically larger in the 3D approach than those obtained with the gold standard method. This behaviour might be due to imperfect spoiling, influencing each method differently. Results for H2O differ due to differences in the saturation of cerebrospinal fluid and partial volume effects. In addition, ground truth values of in vivo studies are unknown, even when comparing to in vivo gold standard methods. A detailed region-of-interest analysis for H2O and T1 matches well published literature values.
000856106 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000856106 588__ $$aDataset connected to CrossRef
000856106 7001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b1$$ufzj
000856106 7001_ $$0P:(DE-Juel1)166343$$aIordanishvili, Elene$$b2$$ufzj
000856106 7001_ $$0P:(DE-Juel1)161353$$aGu, Yun$$b3$$ufzj
000856106 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b4$$ufzj
000856106 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b5$$eCorresponding author$$ufzj
000856106 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0201013$$gVol. 13, no. 8, p. e0201013 -$$n8$$pe0201013 -$$tPLOS ONE$$v13$$x1932-6203$$y2018
000856106 8564_ $$uhttps://juser.fz-juelich.de/record/856106/files/journal.pone.0201013.pdf$$yOpenAccess
000856106 8564_ $$uhttps://juser.fz-juelich.de/record/856106/files/journal.pone.0201013.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856106 8767_ $$8PAB228888$$92018-09-02$$d2018-10-10$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-18-05210$$z1495 USD
000856106 909CO $$ooai:juser.fz-juelich.de:856106$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161242$$aForschungszentrum Jülich$$b0$$kFZJ
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b1$$kFZJ
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166343$$aForschungszentrum Jülich$$b2$$kFZJ
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161353$$aForschungszentrum Jülich$$b3$$kFZJ
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b4$$kFZJ
000856106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich$$b5$$kFZJ
000856106 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000856106 9141_ $$y2018
000856106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856106 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856106 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856106 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856106 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000856106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000856106 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856106 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856106 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856106 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856106 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856106 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856106 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000856106 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000856106 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000856106 980__ $$ajournal
000856106 980__ $$aVDB
000856106 980__ $$aUNRESTRICTED
000856106 980__ $$aI:(DE-Juel1)INM-11-20170113
000856106 980__ $$aI:(DE-Juel1)INM-4-20090406
000856106 980__ $$aI:(DE-82)080010_20140620
000856106 980__ $$aAPC
000856106 9801_ $$aAPC
000856106 9801_ $$aFullTexts