001     856112
005     20210129235237.0
024 7 _ |a 10.1038/s41467-018-06451-3
|2 doi
024 7 _ |a 2128/20143
|2 Handle
024 7 _ |a pmid:30279485
|2 pmid
024 7 _ |a WOS:000446017000011
|2 WOS
024 7 _ |a altmetric:49126144
|2 altmetric
037 _ _ |a FZJ-2018-05758
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Pellegrini, E.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a RIP2 filament formation is required for NOD2 dependent NF-κB signalling
260 _ _ |a [London]
|c 2018
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542869631_6274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Activation of the innate immune pattern recognition receptor NOD2 by the bacterial muramyl-dipeptide peptidoglycan fragment triggers recruitment of the downstream adaptor kinase RIP2, eventually leading to NF-κB activation and proinflammatory cytokine production. Here we show that full-length RIP2 can form long filaments mediated by its caspase recruitment domain (CARD), in common with other innate immune adaptor proteins. We further show that the NOD2 tandem CARDs bind to one end of the RIP2 CARD filament, suggesting a mechanism for polar filament nucleation by activated NOD2. We combine X-ray crystallography, solid-state NMR and high-resolution cryo-electron microscopy to determine the atomic structure of the helical RIP2 CARD filament, which reveals the intermolecular interactions that stabilize the assembly. Using structure-guided mutagenesis, we demonstrate the importance of RIP2 polymerization for the activation of NF-κB signalling by NOD2. Our results could be of use to develop new pharmacological strategies to treat inflammatory diseases characterised by aberrant NOD2 signalling.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Desfosses, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wallmann, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schulze, W. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rehbein, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mas, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Signor, L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gaudon, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zenkeviciute, G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hons, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Malet, H.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gutsche, I.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 12
|u fzj
700 1 _ |a Schoehn, G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Oschkinat, H.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Cusack, S.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41467-018-06451-3
|0 PERI:(DE-600)2553671-0
|n 1
|p 4043
|t Nature Communications
|v 9
|y 2018
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/856112/files/s41467-018-06451-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/856112/files/s41467-018-06451-3.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:856112
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21