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Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge
their robust operation. Fluctuations result from processes as different as dynamically changing
demands, energy trading, and an increasing share of renewable power feed-in. Here we analyze
principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering
frequency time series for a range of power grids, including grids in North America, Japan and
Europe, we find a substantial deviation from Gaussianity best described as Lévy-stable and q-
Gaussian distributions. We present a coarse framework to analytically characterize the impact of
arbitrary noise distributions as well as a superstatistical approach which systematically interprets
heavy tails and skewed distributions. We identify energy trading as a substantial contribution to
today’s frequency fluctuations and effective damping of the grid as a controlling factor enabling
reduction of fluctuation risks, with enhanced effects for small power grids.

The Paris conference 2015 set a path to limit climate
change well below 2°C [1]. To reach this goal, integrating
renewable and sustainable energy sources into the elec-
trical power grid is essential [2]. Wind and solar power
are the most promising contributors to reach a sustain-
able energy supply [3, 4], but their integration into the
existing electric power system remains an enormous chal-
lenge [5–7]. In particular, their power generation varies
on all time scales from several days [8] to less than a
second [9], displaying highly non-Gaussian fluctuations
[10]. This variability must be balanced by storage facil-
ities and back-up plants, requiring precise control of the
electric power grid.

The central observable in power grid monitoring, oper-
ation and control is the grid frequency f [11]. In case of
an excess demand, kinetic energy of large synchronous
generators is converted to electric energy, thereby de-
creasing the frequency. Dedicated power plants measure
this decrease and increase their generation to stabilize
the grid frequency within seconds to minutes (primary
control) [11, 12]. On longer time scales, additional power
plants are activated to restore the nominal grid frequency
(secondary control). The increase of renewable genera-
tion challenges this central control paradigm as genera-
tion becomes more volatile and the spinning reserve de-
creases [13]. How to provide additional effective/virtual
inertia is under heavy development [14, 15]. In addition,
fluctuating demand [16] and fixed trading intervals [17]
already contribute to frequency deviations.

A detailed understanding of the fluctuations of power
grid frequency essentially underlies the design of effec-
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tive control strategies for future grids. Many studies for
simplicity assume Gaussian noise [16, 18–21], while non-
Gaussian effects are only rarely studied [22–25]. Gaussian
approaches neglect the possibility of heavy tails in the fre-
quency distributions and thus strong deviations from the
reference frequency posing serious contingencies partic-
ularly relevant for security assessment. Even in studies
considering non-Gaussian effects, the connection to real
data is missing [22], realistic but isolated wind and solar
data are only numerically evaluated [24, 25] or the fo-
cus is on static power dispatch [16, 21, 23] as opposed to
real-time dynamics.

It is crucial to understand how collective grid dynam-
ics are driven by the fluctuations originating from varying
power demands, fluctuating input generation and trad-
ing. While realistic models describing the actual noise
input of wind and solar power exist [24, 25], the impact
of fluctuations on grid dynamics has been studied for
selected specific scenarios, regions or technologies only
[26, 27]. Furthermore, a systematic quantitative com-
parison of differently sized synchronous regions based on
their frequency fluctuations is needed. It is important
to forecast fluctuation statistics in grids of any size, es-
pecially when setting up small isolated systems, e.g., on
islands or disconnected microgrids [28].

In this Article, we analyze the frequency fluctuations
observed in several electric power grids from three conti-
nents. We determine and characterize the non-Gaussian
nature of these fluctuations existing across grids in both
the 60Hz and 50Hz operation regimes. Furthermore,
we propose an analytically accessible model successfully
describing these data in one consistent framework by
systematically incorporating the non-Gaussian nature of
fluctuations and verify its predictions. The analysis
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Figure 1. Fluctuations in frequency around the reference frequency of 50Hz a: Box plot of the 2015 data by Réseau
de Transport d’Electricité (RTE) [29] describing the Continental European power grid. b: Zoom-in on the first 70 minutes of
the frequency measurements, exposing substantial changes in average and variance of frequencies at 15 minutes trading intervals
(indicated by the dashed lines) . Each box contains data of one year for the same time instance (averaged per minute in a).
The yellow bars contain the 25% and 75% quartile, the gray bars are the whiskers giving the maximum and minimum values
and the white line is the median value.

yields trading as a key factor for non-Gaussianity. Ex-
tracting the effective damping for different synchronous
regions via autocorrelation measures, our work highlights
that the effective grid damping as well as the size of the
grid itself serve as controlling factors to make grid dy-
namics more robust. Finally, we demonstrate how super-
statistics explains heavy tails and skewness using super-
imposed Gaussian distributions.

OBSERVING THE STATISTICS OF FREQUENCY
FLUCTUATIONS

The bulk frequency of a power grid fluctuates around
its nominal frequency of 60 Hz (most parts of Amer-
ica, western Japan, Korea, Philippines) or 50 Hz (eastern
Japan and other countries). To understand and quantify
these fluctuations, we analyze data sets for the power grid
frequency of the European Network of Transmission Sys-
tem Operators for Electricity (ENTSO-E) Continental
European (CE) [29, 30], the Nordic [31], Mallorcan [32]
and Great Britain (GB) [33] grids, the 50 Hz and 60 Hz
regions of Japan [34] as well as the Eastern Interconnec-
tion (EI) in North America [35], see Supplementary Note
1 for more detailed data breakdown. The data consist
of power grid frequency measurements at one location in
the given region (two for Continental Europe) at a sam-
pling rate between ten measurements per second and one
measurement per five minutes.

At first glance, a typical recording of the grid frequency
(Fig. 1) reveals that it coincides extremely well with the
nominal grid reference frequency, highlighting the effi-
ciency of today’s frequency control. Only rarely do we ob-
serve large deviations from the nominal frequency. These
large disturbances often occur when a new power dis-
patch has been settled on by trading (every 15 minutes),
introducing jumps and fluctuations of the frequency. The

total variance of the frequency fluctuations in a given re-
gion thereby depends on the size of the grid – larger grids
are more inertial and thus tend to have a smaller vari-
ance.

All distributions deviate from Gaussian distribu-
tions, which becomes evident when observing their tails
(Fig. 2). For the Continental European, Nordic, Mallor-
can and Japanese grids large deviations from the nominal
frequency are more frequent than for a Gaussian distribu-
tion of given variance, leading to heavy tails, as quanti-
fied, for instance, by an excess kurtosis, see Methods.
The grids of Great Britain and the Eastern Intercon-
nection however, are substantially skewed, i.e., they are
asymmetric around the reference frequency so that devi-
ations towards lower frequencies are more likely than to
higher ones.

Lévy-stable [36] and q-Gaussian distributions [37] are
the best fitting distributions among all distributions
tested, as identified by a maximum likelihood analysis,
see Fig. 2 and Supplementary Note 1. Both distribu-
tions generalize a Gaussian distribution to include heavy
tails and point to two different microscopic mechanisms
underlying the frequency dynamics: q-Gaussians arise
when the power fluctuations are Gaussian on short time
scales, but with a variance or mean changing on longer
time scales. In contrast, Lévy-stable distributions arise
when the underlying power fluctuations are heavy-tailed
or skewed itself. We investigate both settings in more
detail below.

In addition to the aggregated data, we investigate the
autocorrelation of the recorded trajectories, extracting
important events and the characteristic time scales dur-
ing which the system de-correlates. Analyzing the au-
tocorrelation for the Continental European grid reveals
pronounced correlation peaks every 15 minutes and espe-
cially every 30 and 60 minutes, see Fig. 3. These regular
correlation peaks appear in many grids (CE, GB, Nordic)
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Figure 2. Non-Gaussian nature of the frequency dis-
tribution. The 2015 dataset by 50Hertz describing the CE
power grid, where fitted normal, stable and q-Gaussian dis-
tributions are compared with the histogram data using a log
scale for the probability density function (PDF). Deviations
from a normal distribution become evident in the tails, which
are more pronounced than expected for a normal distribu-
tion. The stability parameter of the stable distribution is
αS = 1.898 ± 0.002 and the deformation parameter of the q-
Gaussian distribution is q = 1.20 ± 0.01, whereas (αGauss

S =2
and qGauss=1 for Gaussian distributions). The LÃ©vy-stable
distribution uses four fitting parameters, while the q-Gaussian
uses three and the normal distribution uses two parameters.

and are explained by the trading intervals in most elec-
tricity markets [17], which are often 30 or 15 minutes.
Furthermore, this is also in line with the observation of
large deviations in the frequency trajectories, see Fig. 1,
so that trading has an important impact on frequency
stability. At the beginning of a new trading interval, the
production changes nearly instantaneously and the com-
plex dynamical power grid system needs some time to
relax to its new operational state.

The decay of the autocorrelation provides further in-
formation about the underlying stochastic process. For
the first minutes of each trajectory, we observe an expo-
nential decay of the autocorrelation c as a function of the
time lag ∆t:

c (∆t) ∼ exp (−∆t/τ) , (1)

with a typical correlation time τ , as expected for elemen-
tary stochastic processes without memory such as the
Ornstein-Uhlenbeck process [38].

We extract the inverse correlation time τ−1 for each
available data set and obtain values within the same order
of magnitude across all grids, see Fig. 4. The Japanese
data set only has measurements every five minutes, hence
we refrain from estimating an autocorrelation. The in-
verse correlation time can be seen as the effective damp-
ing γ in a synchronous region with γ := τ−1, see below.
With this in mind, it is not surprising that all grids re-
turn values for γ of the same order of magnitude because
the synchronous machines in these regions do not dif-
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Figure 3. Decay of the autocorrelation of the frequency
dynamics. Plotted are autocorrelation measures as a func-
tion of time lag ∆t for the 50Hertz data set for Central Europe
(CE) of 2015, the Great Britain grid (GB) of 2015, the East-
ern Interconnection (EI) data for 1 day of 2015, the Nordic
grid data of 2015 and Mallorcan data of 2015. After an initial
decay of the autocorrelation, peaks emerge every 15 minutes
due to trading intervals, especially pronounced for the GB
and CE grids, consistent with Fig. 1. Using a log-plot in the
inset allows to extract the damping of the grid based on the
assumption of exponential decay, Equation (1). Note that the
CE, GB and EI grids all display similar decay during the ini-
tial 5 minutes. In contrast, the Nordic grid displays a fast
decay and then a slower one. The plot uses one full year
of frequency data with one second resolution for each region
to generate the autocorrelation plots. Especially the trading
peaks are typically not visible when only 24h of recordings
are considered (as for the EI grid).

fer substantially. This damping consists of mechanical
damping, damper windings and primary control.

STOCHASTIC MODEL OF POWER
FLUCTUATIONS

The variations of the grid frequency are driven by fluc-
tuations of power generation and demand. To link the
evolution of the grid frequency with the power injec-
tions, we make use of the well-established swing equation
[11, 12, 39–44]. Aggregating over the grid, we obtain
a Fokker-Planck equation that models the observed fre-
quency fluctuations and allows an analytical description
of power grid frequency fluctuations.

We analyze frequency dynamics of a power grid on
coarse scales. Every node in the grid corresponds to a
large generator (power plant) or a coherent subgroup and
is characterized by the phase θi and the angular veloc-
ity ωi = 2π (fi − fR). Here fi denotes the frequency of
the nodes i = 1 . . . N and fR = 50Hz or fR = 60Hz,
respectively, is the reference frequency at the grid. The
equations of motion of the phase and velocity are then
given by
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Figure 4. Inverse correlation time of different regions.
The box plots display the estimate of the inverse correlation
time τ−1 based on the autocorrelation decay fitted by an ex-
ponential function, see Equation (1). The data are obtained
by evaluating individual days of all years available and split-
ting the one day of EI into 10 minute trajectories. The box
covers the 25% and 75% quartile with the white line being the
median while the whiskers give the maximum and minimum
values.

d
dt
θi = ωi, (2)

Mi
d
dt
ωi = Pi + εiξi −Diωi +

N∑
j=1

Kij sin (θj − θi) ,

where we have at each node i: inertia Mi, voltage phase
angle θi, mechanical power Pi, random noise ξi with
noise amplitude εi, damping Di and the coupling ma-
trix Kij which is determined by the transmission grid
topology. The operating state of a power grid is charac-
terized by a stable fixed point of the swing equation (2).
The fixed point fulfills ω∗

i = 0 which is equivalent to all
machines working at the reference frequency fR = 50Hz
or fR = 60Hz. At the stable operation point the frequen-
cies at all nodes are equal: ωi = ω̄. Deviations are only
observed during system-wide failures or transiently after
serious contingencies or major topology changes [11, 12].
To obtain the effective equation of motion of the bulk
angular velocity ω̄, we assume a homogeneous ratio of
damping and inertia throughout the network, γ = Di/Mi

[45] as well as symmetric coupling Kij = Kji and assume
that the power is balanced

∑N
i=1 Pi = 0 on average [43].

Setting M :=
∑
iMi, the dynamics of the bulk angular

velocity ω̄ :=
∑N
i=1Miωi/M is governed by the Aggre-

gated Swing Equation (see also [13])

d
dt
ω̄ = −γω̄ + ε̄ξ̄ (t) . (3)

This aggregated swing equation no longer requires pre-
cise knowledge of the parameters of a given region but de-
pends on the effective damping γ, the aggregated noise
amplitude ε̄ and the statistics of the random noise ξ̄,
all characterizing the overall frequency dynamics, see

Methods and Supplementary Note 2 for details. We
note that the damping γ integrates contributions from
damper windings and primary control actions alike. Fi-
nally, both damping γ and the noise amplitude ε̄ could
easily change over time, e.g., due connection of certain
grids or day/night differences. We cover this scenario in
the section on superstatistics.

The bulk angular velocity ω̄ (and thereby the grid fre-
quency) is not following a deterministic evolution but is
influenced by stochastic effects, given by the aggregated
power fluctuations ξ̄. Hence, we characterize a given grid
by the probability distribution function (PDF) of the
bulk angular velocity p (ω̄), similar to the frequency dis-
tribution plotted in Fig. 2. A wide distribution, i.e. one
with high standard deviation, or one with heavy tails,
i.e., high kurtosis, displays large deviations more often
and is thereby less stable than a narrower distribution.

The central decision when modeling stochastic dynam-
ics is how to describe the noise ξ which is generated
from some probability distribution. Explicit choices of
noise distributions are covered here and in Supplemen-
tary Notes 2 and 3 for Gaussian and non-Gaussian noise,
respectively and extended to noise drawn from a Gamma
distribution [46, 47] in Supplementary Note 4. Given the
distribution of ξ, we then formulate and solve a Fokker-
Planck equation [38] to obtain an analytical description
of the distribution of ω̄.

The simplest noise model assumes the noise ξi as inde-
pendent Gaussian noise based on the often-used central
limit theorem. It states that the sum of independent
random numbers drawn from any fixed distribution with
finite variance approaches a Gaussian distribution if the
sample is sufficiently large [38]. In our setting, the sum
consists of all contributions to the noise by consumers,
renewables, trading etc. The Fokker-Planck equation de-
scribing the time-dependent probability density function
p (ω̄, t) follows then as

∂p

∂t
= γ

∂

∂ω̄
(ω̄p) +

1

2

N∑
i=1

ε2i
M2

∂2p

∂ω̄2
, (4)

which is the well-known Ornstein-Uhlenbeck process [38].
The stationary distribution

p (ω̄) =

√
γM2

π
∑N
i=1 ε

2
i

exp

[
−ω̄2 γM2∑N

i=1 ε
2
i

]
, (5)

of (4) characterizes the steady state of the grid as mathe-
matically defined by ∂p/∂t=0, see [38] as well as Methods
and Supplementary Notes 2 and 6 for details.

Crucially, Equation (5) is again a Gaussian distribution
of p (ω̄), i.e., a Gaussian distribution for the power feed-in
fluctuations results in a Gaussian frequency distribution.
Assuming we know the damping γ, noise amplitudes εi
and the total inertia M , we are able to compute the ex-
pected frequency distribution analytically. Furthermore,
the Ornstein-Uhlenbeck autocorrelation exactly follows
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an exponential decay with characteristic time determined
by the damping τ = 1/γ.

Under which conditions do we need to include non-
Gaussian effects in the stochastic modeling? When ap-
plying the central limit theorem, one explicitly assumes
finite variance. However, solar and wind fluctuations are
known to display heavy tails [9, 24] and contribute to the
fluctuations in the power grid. Hence, to describe devia-
tions from normal distributions, including heavy tails and
skewed distributions, we need to base the input noise ξ
on a non-Gaussian noise generating process [48]. This re-
quires generalized Fokker-Planck equations, see Supple-
mentary Note 3. These generalized equations character-
ize fluctuations based on noise input distributed accord-
ing to, e.g., a Lévy-stable law. These Lévy-stable distri-
butions include heavy tails and skewed distributions, as
often observed in nature [10] and are a reasonable fit for
the frequency data, see Fig. 2. Stable distributions are
characterized by a stability parameter αS ∈ (0, 2], which
determines the heavy tails, a skewness parameter βS and
a scale parameter σS , which is similar to the standard
deviation for Gaussian distributions [36].

Inputting power fluctuations ξ drawn from a stable
distribution into the stochastic Equation (3) also results
in grid frequency fluctuations characterized by a stable
distribution, considered as the ’output’ of Equation (3).
Between input and output distributions, only the scale
parameter is modified whereas the skewness βS (asym-
metry) and the stability parameter αS (heavy-tail-ness)
are preserved. In particular, the scale parameter σinS of
the input distribution changes to that of the output dis-
tribution σoutS following the map (Supplementary Notes
3 and 6)

σinS =
1√
2M

[
N∑
i=1

εαS
i

]1/αS

7→ σoutS =
σinS

(γαS)
1/αS

. (6)

We emphasize this remarkable and unique property of
stable distributions [36] for linear models: If the input
power fluctuations are distributed according to a stable
distribution, the output frequency fluctuations are dis-
tributed according to the same family of distributions,
with only one parameter transformed. This property
holds for any linear stochastic process, including the
aggregated swing equation (3). The same happens for
Gaussian distributions since they constitute a subclass of
stable distributions in the limit αS → 2. These properties
are in stark contrast to those of non-stable distributions,
see Supplementary Notes 3 and 4.

What are the consequences of relation (6)? Making
the output frequency distribution narrower, i.e., reducing
risks of extreme events, requires σoutS to be as small as
possible. However, increasing the share of renewables by
rebuilding the energy system is expected to increase the
noise amplitudes εi. In addition, trading impacts the
frequency fluctuations and thereby also contributes to
the noise amplitudes (Fig. 1). However, fluctuations are
efficiently reduced by increasing the effective damping γ

or the inertia M , see Eq. (6).
With the previous results, we are able to quantify the

intuitive statement that larger regions have more inertia
and hence narrower distributions by explicitly comparing
the scale parameters (proportional to standard deviations
in the case of αS = 2) of two different regions as follows:

σoutS 2 = σoutS 1

m1

m2

(
γ1N

αS−1
1

γ2N
αS−1
2

)1/αS

, (7)

assuming identical stability parameters αS and average
inertia mµ = Mµ/Nµ, µ ∈ {1, 2}. Equation (7) shows
that a smaller region (N2 < N1) needs larger damping

than a larger region (γ2

!
> γ1) or has a broader distri-

bution with σoutS 2 > σoutS 1 , i.e., a higher risk of large de-
viations from the stable operational range. The scaling
is given by the scale parameter σS ∼ N (αS−1)/αS , where
the simple square root law is recovered only in the case
of Gaussian distributions (αs = 2). Also, it reveals that
decreasing inertia proportionally increases the scale pa-
rameter.

Furthermore, we estimate the order of magnitude of
the expected noise amplitude

ε = σoutS m
(
αSγN

αS−1
)1/αS

. (8)

by computing the scaling from (6) for typical noise con-
tributions of the order of εi = ε. Based on pure frequency
measurements, every quantity is available for each syn-
chronous region: We estimate the output scale parameter
σoutS and stability parameter αS from the histogram data.
We assume that the number of nodes N is directly pro-
portional to the total electricity production of a region
per year [49, 50]. Since a process driven by stable noise
has no defined autocorrelation function [36], we approx-
imate its autocorrelation with the Ornstein-Uhlenbeck
process and thereby derive an estimate for the damping
γ. With these estimates and Equation (8) we plot the
noise amplitudes for different regions in Fig. 5. The esti-
mated noise amplitude tends to increase with increasing
share of intermittent renewable generation (wind and so-
lar) in a given region. Nevertheless, this relationship is
not very strict and frequency disturbances at trading in-
tervals, see Fig. 1 demonstrate, that at least today trad-
ing and demand fluctuations are contributing substan-
tially to frequency fluctuations.

SUPERSTATISTICS

Instead of modeling the underlying stochastic process
as non-Gaussian, we may interpret the observed statistic
as a superposition of multiple Gaussians, leading to su-
perstatistics, explaining heavy tails and skewness [51, 52].

For our superstatistical approach we use Equation (3)
with Gaussian noise ξ̄

d
dt
ω̄ = −γω̄ + ε̄ξ̄ (t) , (9)
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Figure 5. Noise amplitudes for European and Ameri-
can grids. The noise amplitude tends to increase with the
shares of intermittent renewables. The noise amplitude ε for
each grid is calculated assuming that it is identical at each
node εi = ε and assuming homogeneous inertia. The power
production is normalized with respect to the Eastern Intercon-
nection (EI) generation for the ENTSO-E grids of Continental
Europe (CE), Mallorca, Nordic and Great Britain (GB). Fre-
quency data of all regions and Equation (8) is used to compute
the noise amplitude ε which we expect to be similar in all re-
gions, providing a self-consistency check of our theory. The
box plot is obtained by using different damping, standard de-
viation estimates, etc. for each day of multiple years. The
data for the Nordic grid has large uncertainty due to the two
different correlation time scales. See Supplementary Note 1
for details on the data.

which yields a Gaussian distribution, see Eq. (5).
What changes when the damping γ is no longer con-

stant over time? Both control actions and physical damp-
ing contribute to γ and change over time when certain
power plants are connected and others are shut down.
Similarly, the noise amplitude ε̄ of the system depends
on which consumers are currently active, whether it is
day or night, which renewables are connected and more.
Hence, it is appropriate to replace our static parameters
γ and ε̄ by dynamical parameters that change over time
with a typical time scale T . When applying superstatis-
tics, we assume that the time scale T is large compared
to the intrinsic time scale of the system, which is given
by the autocorrelation time scale, namely T � τ = 1/γ.
Then, the stochastic process finds an equilibrium with
an approximately Gaussian distribution determined by
the current noise and damping. When these parame-
ters change, the frequency distribution becomes a Gaus-
sian distribution with different standard deviation. In
Fig. 6a we demonstrate how just a few Gaussian distri-
butions with different standard deviations give rise to
an excess kurtosis and in Supplementary Note 5 we show
how two Gaussian distributions with shifted means result
in a skewed distribution.

We extract the long time scale T from the data and
compare it to the intrinsic short time scale of the system.
The short time scale τ = 1/γ is based on the exponential

decay of the autocorrelation of the time series of ω̄ yield-
ing a range of τ ≈ 200...550 s for all grids. The long time
scale T is governed by the idea that the superstatistical
ensemble has heavier tails than a normal distribution but
that for a given typical time scale T an equilibrium distri-
bution emerges that is approximately Gaussian. Given
a time series x (t) with mean x̄, we compute the local
kurtosis κ (∆t) for different time intervals ∆t and choose
the large time scale T by κ (∆t = T ) = 3 [51]. Similarly,
we compute the time for which the average skewness is
zero to extract the long time scale for the Great Britain
or Eastern Interconnection grids, see Methods and Sup-
plementary Note 5 for details and Fig. 6 for an example
for Japan.

All synchronous regions return large but different long
time scales T . We determine the long time scales to be
of the order of T ≈ 1 . . . 5h with small values in Mal-
lorca and the Eastern Interconnections and large values
in Continental Europe and Japan, hinting to distinct un-
derlying mechanisms how damping and noise change in
each region. Compared to the intrinsic short time scale
τ ∼ 200...550 s, the long time scale T is larger by at least
one order of magnitude. Hence, the superstatistical ap-
proach is justified, i.e., it is valid to interpret the heavy
tails as a result of superimposing Gaussians.

Finally, we perform another consistency check of the
superstatistical approach and extract the distribution of
the effective friction γeff [51], see Methods. Based on
general results on superstatistics, we expect the effec-
tive friction to follow a χ2, inverse χ2 or log-normal dis-
tribution [53, 54], which then leads to an approximate
q-Gaussian distribution of the frequency, see Supplemen-
tary Note 5 for a derivation. In the case of the Japanese
60Hz region the distribution of γeff is well-described by
a log-normal distribution again supporting the supersta-
tistical approach, see Fig. 7.

DISCUSSION

In summary, we have analyzed power grid frequency
fluctuations by applying analytical stochastic methods to
time series of different synchronous regions across conti-
nents including North America, Japan and different Eu-
ropean regions. Based on bulk frequency measurements,
we have identified trading as a substantial source of fluc-
tuations (Figs. 1 and 3). Although frequency fluctuations
and power uncertainty are often modeled as Gaussian
distributions [16, 18–21], we pinned down and quantified
substantial deviations from a Gaussian form, including
heavy tails and skewed distributions (Fig. 2).

Obtaining an analytical description of a complex sys-
tem allows deeper insight into it. Hence, condensing the
analysis of frequency fluctuations in power grids via a sec-
ond order nonlinear dynamics, the swing equation, and
neglecting spatial correlations, we derived (generalized)
Fokker-Planck equations for the bulk angular velocity ω̄.
We obtained precise predictions on how power fluctua-
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structure for the real frequency measurements, the frequency recordings are split into trajectories of length ∆t each and the
kurtosis is computed. b: The average kurtosis of the Japanese 60Hz data set in dependence of the length of ∆t. For very small
∆t the distribution has lighter tails than a Gaussian while using the full data set or large ∆t leads to the earlier observed heavy
tails. The long time scale T , during which the distribution changes, is determined as κ (∆t = T ) = 3.
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Figure 7. Self-consistency test of superstatistics. Plot-
ted is the histogram of the effective friction γeff based on
the Japanese 60Hz frequency measurements which is well-
described by a log-normal distribution. Such a distribution
of the effective friction γeff, directly leads to q-Gaussian dis-
tributions of the aggregated data, see Supplementary Note 5.
Other data sets are also approximated by log-normal distri-
butions, see Supplementary Note 5.

tions impact the distribution of fluctuations of the grid
frequency. Furthermore, our approach identifies, besides
grid size, an increasing effective damping and inertia as a
controlling factor for reducing fluctuation-induced risks.
By incorporating smart grid control mechanisms [4] or
increasing generator droop control [11], modifying effec-
tive damping may therefore reliably reduce the likelihood
of large fluctuations in power grids [55]. Finally, our an-
alytical theory is able to compare differently sized grids,
predict fluctuations based on the size and inertia of the
grid (Equation (7)). Crucially, our mathematical frame-

work goes beyond the simple N−1/2 scaling of Gaussian
noise.

The results offer two approaches to model power grids
under uncertainty: First, an optimization could include
the non-Gaussian nature of the distribution by incorpo-
rating non-Gaussian noise, e.g. in the form of Lévy-stable
noise. Alternatively, we demonstrated that the distribu-
tions are also well explained by a superstatistics approach
where the non-Gaussian nature of the distributions arises
by superimposing different Gaussian distributions. Es-
pecially when modeling shorter time scales of one hour
or below, a Gaussian approach is supported by our re-
sults. Studies aiming to cover time scales of full months
or years, however, have to account for changing mean
and variance of the assumed Gaussian distribution or ex-
plicitly model non-Gaussian distributions, going beyond
current Gaussian approaches [16, 18–21].

The findings reported above have a number of implica-
tions for the operation and design of current and future
energy systems. First, as trading induces large frequency
fluctuations, designing new electricity markets and lim-
iting frequency fluctuations are highly interlinked, espe-
cially when considering the implementation of smart grid
concepts [4, 21]. Second, knowing the temporal corre-
lation structure of fluctuations helps predicting increas-
ing and decreasing likelihoods of large amplitude events,
thereby enabling mitigation strategies to be applied on
time scales that make them most efficient. Finally, deriv-
ing the scaling of fluctuations as a function of grid param-
eters, especially the grid size, should be very useful when
setting up isolated grids, e.g. microgrids with a specified
frequency quality as damping and control needs can eas-
ily be estimated by the approach introduced above. This
may also be of use for larger synchronous regions when



8

facing a decreasing inertia M .
Moreover, applying similar stochastic methods to

power grids also raises a range of additional questions:
How does correlated noise impact the frequency statis-
tics? Does the predicted scaling of fluctuations with the
grid size hold for a larger collection of independent power
grids and in particular very small islands or microgrids?
Can we disentangle damping and primary control to ex-
plain the differences of long time scales among different
regions? These questions require further careful data
analysis in future work, involving substantially more data
of microgrids, work that could inspire further collabora-
tion including a range of academic fields as well as public
institutions and industry.

METHODS

Moments of the frequency distributions

Deviations from Gaussian distributions as observed in
Fig. 2 are quantified in a model independent way using
moments of the frequency distribution: Given M mea-
surements of a discrete stochastic variable f , e.g. the
grid frequency, as f1, f2,...,fM , its n-th moment is de-
fined as

µn :=
1

M

M∑
i=1

fni . (10)

The first moment of a distribution is the mean µ1 ≡ µ.
Instead of the second moment, the centralized second
moment, i.e., the variance is more commonly used. It is
defined as

σ2 :=
1

M

M∑
i=1

(fi − µ)
2
. (11)

Finally, we use the normalized third and fourth moments,
the skewness β and kurtosis κ, respectively, which are
defined as

β :=
1

M

M∑
i=1

(
fi − µ
σ

)3

, (12)

κ :=
1

M

M∑
i=1

(
fi − µ
σ

)4

. (13)

A Gaussian distribution is symmetric and hence the
skewness β equals zero. A non-zero skewness implies a
distribution that is not symmetric around the mean but
is more pronounced in one direction. The kurtosis mean-
while quantifies the extremity of the tails. A Gaussian
distribution has κGauss = 3 while a higher value indi-
cates an increased likelihood of large deviations. For in-
stance, the continental European grid displays a kurtosis
of κCE = 4.0± 0.1.

Normally distributed noise

For Eq. (4) we took the sum over multiple noise re-
alizations that follow a normal distribution: Let ξi be
random variables following a normal distribution, i.e.,

ξi ∼ N (0, 1) , (14)

where N (0, 1) denotes a normal distribution with mean
0 and standard deviation 1. Then, the sum of identically
and independently distributed random variables ξi given
as

ε̄ξ̄ :=

N∑
i=1

εiξi (15)

is distributed like a single normal distribution [36]

ε̄ξ̄ ∼ N

0,

√√√√ N∑
i=1

ε2i

 . (16)

Superstatistics

In Figs. 6 and 7 we extract the local kurtosis and ef-
fective damping from the time series as follows. Let x (t)
be a time series of random measurements with a mean
x̄. To test whether x (t) is aggregated by drawing from
multiple distributions, we compute the local kurtosis as:

κ (∆t) =
1

tmax −∆t

∫ tmax−∆t

0

〈
(x− x̄)

4
〉
t0,∆t〈

(x− x̄)
2
〉2

t0,∆t

dt0, (17)

where 〈...〉t0,∆t =
∫ t0+∆t

t0
...dt. We do so for several values

of ∆t and choose T so that κ (∆t = T ) = 3, i.e., averaging
over a time scale T , there is no excess kurtosis and locally
the variable x is subject to Gaussian noise.

The effective friction γeff, which is changing over time,
is then computed as

γeff (t0) =
1

〈x2〉t0,T − 〈x〉
2
t0,T

. (18)

Following [51] we expect γeff to follow a log-normal or
alternatively a χ2 or inverse χ2 distribution as those lead
to q-Gaussian distributions of x, see Supplementary Note
5.

Data availability

Frequency recordings are publicly available at the re-
spective references for the CE, GB, Nordic and Japanese
regions [29–31, 33, 34]. Frequency data for Mallorca [32]
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were provided by Eder Batista Tchawou Tchuisseu. Data
for the Eastern Interconnection [35] were provided by

Micah Till. All data that support the results presented
in the figures of this study are available from the authors
upon reasonable request.
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