Home > Publications database > TopScore: Using Deep Neural Networks and Large Diverse Data Sets for Accurate Protein Model Quality Assessment > print |
001 | 856174 | ||
005 | 20210129235247.0 | ||
024 | 7 | _ | |a 10.1021/acs.jctc.8b00690 |2 doi |
024 | 7 | _ | |a 1549-9618 |2 ISSN |
024 | 7 | _ | |a 1549-9626 |2 ISSN |
024 | 7 | _ | |a pmid:30252470 |2 pmid |
024 | 7 | _ | |a WOS:000450695200057 |2 WOS |
024 | 7 | _ | |a altmetric:49424035 |2 altmetric |
037 | _ | _ | |a FZJ-2018-05801 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Mulnaes, Daniel |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a TopScore: Using Deep Neural Networks and Large Diverse Data Sets for Accurate Protein Model Quality Assessment |
260 | _ | _ | |a Washington, DC |c 2018 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1544596783_28837 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The value of protein models obtained with automated protein structure prediction depends primarily on their accuracy. Protein model quality assessment is thus critical to select the model that can best answer biologically relevant questions from an ensemble of predictions. However, despite many advances in the field, different methods capture different types of errors, begging the question of which method to use. We introduce TopScore, a meta Model Quality Assessment Program (meta-MQAP) that uses deep neural networks to combine scores from 15 different primary predictors to predict accurate residue-wise and whole-protein error estimates. The predictions on six large independent data sets are highly correlated to superposition-independent errors in the model, achieving a Pearson’s Rall2 of 0.93 and 0.78 for whole-protein and residue-wise error predictions, respectively. This is a significant improvement over any of the investigated primary MQAPs, demonstrating that much can be gained by optimally combining different methods and using different and very large data sets. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 1 |
536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20170501) |0 G:(DE-Juel1)hkf7_20170501 |c hkf7_20170501 |f Forschergruppe Gohlke |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 1 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jctc.8b00690 |g p. acs.jctc.8b00690 |0 PERI:(DE-600)2166976-4 |n 11 |p 6117–6126 |t Journal of chemical theory and computation |v 14 |y 2018 |x 1549-9626 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856174/files/acs.jctc.8b00690.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856174/files/acs.jctc.8b00690.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:856174 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172663 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2017 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|