001     8564
005     20210129210442.0
024 7 _ |2 DOI
|a 10.1002/er.1634
024 7 _ |2 WOS
|a WOS:000274940600005
037 _ _ |a PreJuSER-8564
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Energy & Fuels
084 _ _ |2 WoS
|a Nuclear Science & Technology
100 1 _ |a Hirschfeld, J.A.
|b 0
|u FZJ
|0 P:(DE-Juel1)130713
245 _ _ |a Tomographic diagnostics of current distributions in a fuel cell stack
260 _ _ |a London [u.a.]
|b Wiley-Intersience
|c 2010
300 _ _ |a 284 - 292
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a International Journal of Energy Research
|x 0363-907X
|0 14583
|y 3
|v 34
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A novel tomographic scheme for analysing the state of any single membrane electrode assembly (MEA) in a stack is suggested. Plates of very high conductivity placed between every fuel cell and slitted in an appropriate manner cause surface currents at well-defined locations of the stack. We show that knowing these surface currents, information about anomalies of the currents in a MEA can be obtained using the methods of tomography. The results are mathematically not unique. However, when assuming plausible defect structures, one can exclude improbable deficiencies by applying a special form of simulated annealing. We present numerical calculations of typical examples demonstrating that the essential defects of the MEA in any single cell of the stack can be detected and their extent can be determined. Copyright (C) 2009 John Wiley & Sons, Ltd.
536 _ _ |2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |0 G:(DE-Juel1)FUEK414
|x 1
|c FUEK414
|a Kondensierte Materie (FUEK414)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 2
|f POF II
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a defect detection
653 2 0 |2 Author
|a degradation
653 2 0 |2 Author
|a stack
653 2 0 |2 Author
|a fuel cell
653 2 0 |2 Author
|a current density distribution
653 2 0 |2 Author
|a tomography
653 2 0 |2 Author
|a MEA
653 2 0 |2 Author
|a DMFC
653 2 0 |2 Author
|a PEMFC
700 1 _ |a Lustfeld, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)130810
700 1 _ |a Reißel, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Steffen, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)132269
773 _ _ |a 10.1002/er.1634
|g Vol. 34, p. 284 - 292
|p 284 - 292
|q 34<284 - 292
|0 PERI:(DE-600)1480879-1
|t International journal of energy research
|v 34
|y 2010
|x 0363-907X
856 7 _ |u http://dx.doi.org/10.1002/er.1634
909 C O |o oai:juser.fz-juelich.de:8564
|p VDB
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IAS-1
|l Quanten-Theorie der Materialien
|g IAS
|z IFF-1
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 2
970 _ _ |a VDB:(DE-Juel1)117553
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21