000856418 001__ 856418
000856418 005__ 20240619091238.0
000856418 0247_ $$2doi$$a10.1063/1.5041335
000856418 0247_ $$2ISSN$$a0003-6951
000856418 0247_ $$2ISSN$$a1077-3118
000856418 0247_ $$2ISSN$$a1520-8842
000856418 0247_ $$2ISSN$$a1931-9401
000856418 0247_ $$2Handle$$a2128/20358
000856418 0247_ $$2WOS$$aWOS:000443759600030
000856418 0247_ $$2altmetric$$aaltmetric:47229507
000856418 037__ $$aFZJ-2018-05823
000856418 082__ $$a530
000856418 1001_ $$0P:(DE-HGF)0$$aBarannik, A. A.$$b0
000856418 245__ $$aContactless exploration of graphene properties using millimeter wave response of WGM resonator
000856418 260__ $$aNew York, NY$$bAIP74335$$c2018
000856418 3367_ $$2DRIVER$$aarticle
000856418 3367_ $$2DataCite$$aOutput Types/Journal article
000856418 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544430494_9818
000856418 3367_ $$2BibTeX$$aARTICLE
000856418 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856418 3367_ $$00$$2EndNote$$aJournal Article
000856418 520__ $$aThe response of a sapphire whispering gallery mode (WGM) resonator to a single-layer graphene film was studied in the millimeter wave band (frequency of about 40 GHz) at different distances of graphene from the resonator. In the resonator, the HE141δ WGM was excited, in which the longitudinal component of the electric field is predominant. Based on the fitting results of both the response measurement and the numerical simulation of the resonator, the conductivity value was obtained for a known film thickness. The conductivity of our CVD-grown and transferred graphene was found to be (1.02 ± 0.06) × 106 S/m. This deviates slightly from the values obtained through our DC conductivity measurements, reflecting the real parameters of the graphene material after transfer from copper to a quartz substrate. A significant difference was demonstrated between the conductivity values obtained by the fitting procedure and those calculated using the perturbation method. In explanation for the discrepancy, we propose a possible inapplicability of the perturbation method for the cases of both the resonator and mode polarization used in this work. The results of this work show that a WGM resonator technique allows contactless exploration of graphene parameters, such as conductivity or sheet resistance, in the millimeter wave band.
000856418 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000856418 588__ $$aDataset connected to CrossRef
000856418 7001_ $$0P:(DE-HGF)0$$aCherpak, N. T.$$b1
000856418 7001_ $$0P:(DE-HGF)0$$aProtsenko, I. A.$$b2
000856418 7001_ $$0P:(DE-HGF)0$$aGubin, A. I.$$b3
000856418 7001_ $$0P:(DE-Juel1)159559$$aKireev, D.$$b4
000856418 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b5$$eCorresponding author$$ufzj
000856418 773__ $$0PERI:(DE-600)2265524-4$$a10.1063/1.5041335$$gVol. 113, no. 9, p. 094102 -$$n9$$p094102 -1-4$$tApplied physics reviews$$v113$$x1077-3118$$y2018
000856418 8564_ $$uhttps://juser.fz-juelich.de/record/856418/files/1.5041335.pdf$$yPublished on 2018-08-29. Available in OpenAccess from 2019-08-29.
000856418 8564_ $$uhttps://juser.fz-juelich.de/record/856418/files/1.5041335.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-29. Available in OpenAccess from 2019-08-29.
000856418 909CO $$ooai:juser.fz-juelich.de:856418$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000856418 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ICS-8$$b0
000856418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000856418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159559$$aForschungszentrum Jülich$$b4$$kFZJ
000856418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b5$$kFZJ
000856418 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000856418 9141_ $$y2018
000856418 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856418 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856418 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000856418 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS REV : 2017
000856418 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL PHYS REV : 2017
000856418 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856418 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856418 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856418 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856418 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856418 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856418 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000856418 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856418 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856418 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000856418 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856418 920__ $$lyes
000856418 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000856418 9801_ $$aFullTexts
000856418 980__ $$ajournal
000856418 980__ $$aVDB
000856418 980__ $$aUNRESTRICTED
000856418 980__ $$aI:(DE-Juel1)ICS-8-20110106
000856418 981__ $$aI:(DE-Juel1)IBI-3-20200312