001     856428
005     20220930130159.0
024 7 _ |a 10.1002/cm.21470
|2 doi
024 7 _ |a 0886-1544
|2 ISSN
024 7 _ |a 1097-0169
|2 ISSN
024 7 _ |a 1949-3584
|2 ISSN
024 7 _ |a 1949-3592
|2 ISSN
024 7 _ |a pmid:30176121
|2 pmid
024 7 _ |a WOS:000451117400001
|2 WOS
037 _ _ |a FZJ-2018-05827
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zielinski, Alexander
|0 P:(DE-Juel1)128843
|b 0
245 _ _ |a Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application
260 _ _ |a Bognor Regis
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544090476_16461
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces.Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Linnartz, Christina
|0 P:(DE-Juel1)145159
|b 1
|u fzj
700 1 _ |a Pleschka, Catharina
|0 P:(DE-Juel1)157714
|b 2
700 1 _ |a Dreissen, Georg
|0 P:(DE-Juel1)129308
|b 3
|u fzj
700 1 _ |a Springer, Ronald
|0 P:(DE-Juel1)144199
|b 4
|u fzj
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 5
|u fzj
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/cm.21470
|0 PERI:(DE-600)2536522-8
|n 9
|p 385-394
|t Cytoskeleton
|v 75
|y 2018
|x 1949-3584
856 4 _ |u https://juser.fz-juelich.de/record/856428/files/F6989815.pdf
856 4 _ |u https://juser.fz-juelich.de/record/856428/files/F6989815.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:856428
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145159
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128817
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CYTOSKELETON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21