001     856431
005     20240711092232.0
024 7 _ |a 10.1016/j.calphad.2018.05.009
|2 doi
024 7 _ |a 0364-5916
|2 ISSN
024 7 _ |a 1873-2984
|2 ISSN
024 7 _ |a WOS:000444666200019
|2 WOS
037 _ _ |a FZJ-2018-05830
082 _ _ |a 540
100 1 _ |a Jantzen, Tatjana
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Addition of TiO2 and Ti2O3 to the Al2O3-FeO-Fe2O3-MgO System
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539672246_2493
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Al2O3-FeO-Fe2O3-MgO-TiO2-Ti2O3 system has been thermodynamically assessed using all available experimental data. Titanium was introduced into the thermodynamic description of the liquid phase as well as of solid solution phases such as MeO, Cubic Spinel, Titania Spinel, Corundum and Pseudobrookite. Particular attention was given to the phase Cubic Spinel which forms a wide miscibility range amongst Fe3O4-TiFe2O4-TiMg2O4-TiMn2O4. In addition, the present modelling of the phase Pseudobrookite allows the description of the experimentally determined mutual solubility between Al2TiO5, MgTi2O5, FeTi2O5, Fe2TiO5 and Ti3O5. 9 titanates as stoichiometric phases have also been included in the database.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hack, Klaus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yazhenskikh, Elena
|0 P:(DE-Juel1)129813
|b 2
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 3
773 _ _ |a 10.1016/j.calphad.2018.05.009
|g Vol. 62, p. 187 - 200
|0 PERI:(DE-600)1501512-9
|p 187 - 200
|t Calphad
|v 62
|y 2018
|x 0364-5916
856 4 _ |u https://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856431
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CALPHAD : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21