001     856433
005     20210129235253.0
024 7 _ |a 10.1091/mbc.E17-06-0387
|2 doi
024 7 _ |a 1044-2030
|2 ISSN
024 7 _ |a 1059-1524
|2 ISSN
024 7 _ |a 1939-4586
|2 ISSN
024 7 _ |a pmid:30044710
|2 pmid
024 7 _ |a WOS:000451909400006
|2 WOS
024 7 _ |a altmetric:45865247
|2 altmetric
024 7 _ |a 2128/22880
|2 Handle
037 _ _ |a FZJ-2018-05832
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Noethel, Barbara
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Transition of responsive mechanosensitive elements from focal adhesions to adherens junctions on epithelial differentiation
260 _ _ |a Bethesda, Md.
|c 2018
|b American Society for Cell Biology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568790286_18935
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The skin’s epidermis is a multilayered epithelial tissue and the first line of defense against mechanical stress. Its barrier function depends on an integrated assembly and reorganization of cell–matrix and cell–cell junctions in the basal layer and on different intercellular junctions in suprabasal layers. However, how mechanical stress is recognized and which adhesive and cytoskeletal components are involved are poorly understood. Here, we subjected keratinocytes to cyclic stress in the presence or absence of intercellular junctions. Both states not only recognized but also responded to strain by reorienting actin filaments perpendicular to the applied force. Using different keratinocyte mutant strains that altered the mechanical link of the actin cytoskeleton to either cell–matrix or cell–cell junctions, we show that not only focal adhesions but also adherens junctions function as mechanosensitive elements in response to cyclic strain. Loss of paxillin or talin impaired focal adhesion formation and only affected mechanosensitivity in the absence but not presence of intercellular junctions. Further analysis revealed the adherens junction protein α-catenin as a main mechanosensor, with greatest sensitivity conferred on binding to vinculin. Our data reveal a mechanosensitive transition from cell–matrix to cell–cell adhesions on formation of keratinocyte monolayers with vinculin and α-catenin as vital players.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ramms, Lena
|0 P:(DE-Juel1)151217
|b 1
700 1 _ |a Dreissen, Georg
|0 P:(DE-Juel1)129308
|b 2
|u fzj
700 1 _ |a Hoffmann, Marco
|0 P:(DE-Juel1)164475
|b 3
|u fzj
700 1 _ |a Springer, Ronald
|0 P:(DE-Juel1)144199
|b 4
|u fzj
700 1 _ |a Rübsam, Matthias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ziegler, Wolfgang H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Niessen, Carien M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 8
|u fzj
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 9
|e Corresponding author
|u fzj
773 _ _ |a 10.1091/mbc.E17-06-0387
|g Vol. 29, no. 19, p. 2317 - 2325
|0 PERI:(DE-600)1474922-1
|n 19
|p 2317 - 2325
|t Molecular biology of the cell
|v 29
|y 2018
|x 1939-4586
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/856433/files/mbc-29-2317-3.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/856433/files/mbc-29-2317-3.pdf?subformat=pdfa
856 4 _ |u https://juser.fz-juelich.de/record/856433/files/Noethel%20et%20al_MBoC_2018%20revised2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856433/files/Noethel%20et%20al_MBoC_2018%20revised2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:856433
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128817
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
|0 LIC:(DE-HGF)CCBYNCSA3
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL BIOL CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21