000856435 001__ 856435
000856435 005__ 20240711092232.0
000856435 0247_ $$2doi$$a10.1016/j.surfcoat.2018.09.043
000856435 0247_ $$2ISSN$$a0257-8972
000856435 0247_ $$2ISSN$$a1879-3347
000856435 0247_ $$2WOS$$aWOS:000447475100030
000856435 037__ $$aFZJ-2018-05834
000856435 082__ $$a670
000856435 1001_ $$0P:(DE-Juel1)168263$$aLeng, Wencai$$b0$$eCorresponding author
000856435 245__ $$aMicrostructural Evolution of an Aluminide Coating on Alloy 625 During Wet air exposure at 900 °C and 1000 °C
000856435 260__ $$aAmsterdam [u.a.]$$bElsevier Science84367$$c2018
000856435 3367_ $$2DRIVER$$aarticle
000856435 3367_ $$2DataCite$$aOutput Types/Journal article
000856435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539669793_30352
000856435 3367_ $$2BibTeX$$aARTICLE
000856435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856435 3367_ $$00$$2EndNote$$aJournal Article
000856435 520__ $$aThe microstructural changes of the aluminized alloy 625 during cyclic oxidation in air + 6% H2O at 900 °C and 1000 °C were analyzed using optical metallography (OM), scanning electron microscopy (SEM) with energy and wave length dispersive X-ray analysis (EDX/WDX) as well as electron backscatter diffraction (EBSD). An in-house developed thermodynamic-kinetic procedure was employed to predict the microstructural evolution of aluminized alloy 625 during high temperature exposure by considering simultaneously occurring surface oxidation and interdiffusion processes. Due to the lack of mobility data for the relevant alloying elements in the σ-phase, assumptions for the mobilities were made based on the value of the mobilities in α-Cr. Despite these assumptions, the calculated results were found to be in good agreement with experimental observations. The complete depletion of β-NiAl in the coating observed during exposure at 1000 °C was correctly predicted by the model. The model was also able to predict dissolution of the precipitate phases α-Cr and σ in the interdiffusion zone during exposures at 900 °C and 1000 °C. The model was however unable to predict the formation of the μ-phase in the alloy after 1000 h of exposure at 1000 °C. The developed modelling approach offers the potential to predict microstructural changes of aluminized nickel base alloys thus reducing cost and time consuming experimental efforts.
000856435 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856435 588__ $$aDataset connected to CrossRef
000856435 7001_ $$0P:(DE-Juel1)156565$$aPillai, R.$$b1
000856435 7001_ $$0P:(DE-Juel1)129727$$aHuczkowski, P.$$b2
000856435 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, D.$$b3
000856435 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b4
000856435 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2018.09.043$$gVol. 354, p. 268 - 280$$p268 - 280$$tSurface and coatings technology$$v354$$x0257-8972$$y2018
000856435 8564_ $$uhttps://juser.fz-juelich.de/record/856435/files/1-s2.0-S0257897218310259-main.pdf$$yRestricted
000856435 8564_ $$uhttps://juser.fz-juelich.de/record/856435/files/1-s2.0-S0257897218310259-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856435 909CO $$ooai:juser.fz-juelich.de:856435$$pVDB
000856435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168263$$aForschungszentrum Jülich$$b0$$kFZJ
000856435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156565$$aForschungszentrum Jülich$$b1$$kFZJ
000856435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129727$$aForschungszentrum Jülich$$b2$$kFZJ
000856435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b3$$kFZJ
000856435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b4$$kFZJ
000856435 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856435 9141_ $$y2018
000856435 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000856435 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2017
000856435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856435 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856435 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856435 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856435 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856435 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856435 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856435 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856435 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000856435 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856435 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000856435 980__ $$ajournal
000856435 980__ $$aVDB
000856435 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856435 980__ $$aUNRESTRICTED
000856435 981__ $$aI:(DE-Juel1)IMD-1-20101013