000856464 001__ 856464
000856464 005__ 20240711092233.0
000856464 0247_ $$2doi$$a10.1016/j.ijfatigue.2018.09.012
000856464 0247_ $$2ISSN$$a0142-1123
000856464 0247_ $$2ISSN$$a1879-3452
000856464 0247_ $$2WOS$$aWOS:000451362300007
000856464 0247_ $$2Handle$$a2128/24796
000856464 037__ $$aFZJ-2018-05858
000856464 082__ $$a600
000856464 1001_ $$0P:(DE-Juel1)161596$$aFischer, T.$$b0$$eCorresponding author$$ufzj
000856464 245__ $$aInfluence of Steam Atmosphere on theCcrack Propagation Behavior of a 9–12% Cr Ferritic/Martensitic Steel at Temperatures from 300 °C to 600 °C Depending on Frequency and Hold Time
000856464 260__ $$aOxford$$bElsevier$$c2019
000856464 3367_ $$2DRIVER$$aarticle
000856464 3367_ $$2DataCite$$aOutput Types/Journal article
000856464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539696600_30352
000856464 3367_ $$2BibTeX$$aARTICLE
000856464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856464 3367_ $$00$$2EndNote$$aJournal Article
000856464 520__ $$aThis paper deals with the influence of steam atmosphere on the crack propagation behavior in the ferritic/martensitic steel X20CrMoV12-1 depending on frequency (or hold time) and temperature with a focus on the temperature range from 300 °C to 600 °C, which is most important for flexibly operated power plants. Modern conventional power plants must be able to compensate fluctuations in residual load, caused by renewable energy sources. This results in higher numbers of start-up and shut-down cycles and therefore in more damaging loading scenarios than in the past. Due to the ever shorter operating time at constant high temperature, the importance of creep damage decreases, while fatigue damage gains in importance. Furthermore probable interactions of fatigue damage and steam atmosphere have to be considered. For this reason the influence of steam on the crack propagation behavior in X20 was investigated in detail. Steam oxidation strongly depends on temperature and time, i.e. on fatigue testing frequency and temperature. The effect of steam on crack propagation behavior was found to be not generally detrimental (for R = 0.1). Experiments with 3.33 × 10−3 Hz (300 s hold time) in the temperature range from 400 °C to 550 °C yielded significantly higher ΔK values to start crack propagation in comparison to experiments performed in air. In the temperature range from 300 °C to 550 °C the crack growth rate under steam atmosphere in the worst case corresponds to that measured in air, while in the best case it was found to be lower. Generally crack propagation in steam atmosphere was found to be accelerated at increased testing frequency (5 Hz, 20 Hz) starting from 500 °C up to higher temperature.
000856464 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856464 588__ $$aDataset connected to CrossRef
000856464 7001_ $$0P:(DE-Juel1)129742$$aKuhn, B.$$b1$$ufzj
000856464 773__ $$0PERI:(DE-600)2013377-7$$a10.1016/j.ijfatigue.2018.09.012$$gVol. 119, p. 62 - 77$$p62 - 77$$tInternational journal of fatigue$$v119$$x0142-1123$$y2019
000856464 8564_ $$uhttps://juser.fz-juelich.de/record/856464/files/1-s2.0-S0142112318305565-main.pdf$$yRestricted
000856464 8564_ $$uhttps://juser.fz-juelich.de/record/856464/files/1-s2.0-S0142112318305565-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856464 8564_ $$uhttps://juser.fz-juelich.de/record/856464/files/Influence%20of%20steam%20atmosphere%20on%20the%20crack%20propagation%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic_martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20depending%20on%20frequen.pdf$$yPublished on 2018-10-01. Available in OpenAccess from 2020-10-01.
000856464 8564_ $$uhttps://juser.fz-juelich.de/record/856464/files/Influence%20of%20steam%20atmosphere%20on%20the%20crack%20propagation%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic_martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20depending%20on%20frequen.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-10-01. Available in OpenAccess from 2020-10-01.
000856464 909CO $$ooai:juser.fz-juelich.de:856464$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161596$$aForschungszentrum Jülich$$b0$$kFZJ
000856464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ
000856464 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856464 9141_ $$y2019
000856464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856464 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000856464 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856464 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000856464 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J FATIGUE : 2017
000856464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856464 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856464 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856464 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856464 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856464 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000856464 9801_ $$aFullTexts
000856464 980__ $$ajournal
000856464 980__ $$aVDB
000856464 980__ $$aUNRESTRICTED
000856464 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856464 981__ $$aI:(DE-Juel1)IMD-1-20101013