001     856464
005     20240711092233.0
024 7 _ |a 10.1016/j.ijfatigue.2018.09.012
|2 doi
024 7 _ |a 0142-1123
|2 ISSN
024 7 _ |a 1879-3452
|2 ISSN
024 7 _ |a WOS:000451362300007
|2 WOS
024 7 _ |a 2128/24796
|2 Handle
037 _ _ |a FZJ-2018-05858
082 _ _ |a 600
100 1 _ |a Fischer, T.
|0 P:(DE-Juel1)161596
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Influence of Steam Atmosphere on theCcrack Propagation Behavior of a 9–12% Cr Ferritic/Martensitic Steel at Temperatures from 300 °C to 600 °C Depending on Frequency and Hold Time
260 _ _ |a Oxford
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539696600_30352
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper deals with the influence of steam atmosphere on the crack propagation behavior in the ferritic/martensitic steel X20CrMoV12-1 depending on frequency (or hold time) and temperature with a focus on the temperature range from 300 °C to 600 °C, which is most important for flexibly operated power plants. Modern conventional power plants must be able to compensate fluctuations in residual load, caused by renewable energy sources. This results in higher numbers of start-up and shut-down cycles and therefore in more damaging loading scenarios than in the past. Due to the ever shorter operating time at constant high temperature, the importance of creep damage decreases, while fatigue damage gains in importance. Furthermore probable interactions of fatigue damage and steam atmosphere have to be considered. For this reason the influence of steam on the crack propagation behavior in X20 was investigated in detail. Steam oxidation strongly depends on temperature and time, i.e. on fatigue testing frequency and temperature. The effect of steam on crack propagation behavior was found to be not generally detrimental (for R = 0.1). Experiments with 3.33 × 10−3 Hz (300 s hold time) in the temperature range from 400 °C to 550 °C yielded significantly higher ΔK values to start crack propagation in comparison to experiments performed in air. In the temperature range from 300 °C to 550 °C the crack growth rate under steam atmosphere in the worst case corresponds to that measured in air, while in the best case it was found to be lower. Generally crack propagation in steam atmosphere was found to be accelerated at increased testing frequency (5 Hz, 20 Hz) starting from 500 °C up to higher temperature.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kuhn, B.
|0 P:(DE-Juel1)129742
|b 1
|u fzj
773 _ _ |a 10.1016/j.ijfatigue.2018.09.012
|g Vol. 119, p. 62 - 77
|0 PERI:(DE-600)2013377-7
|p 62 - 77
|t International journal of fatigue
|v 119
|y 2019
|x 0142-1123
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/856464/files/1-s2.0-S0142112318305565-main.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/856464/files/1-s2.0-S0142112318305565-main.pdf?subformat=pdfa
856 4 _ |y Published on 2018-10-01. Available in OpenAccess from 2020-10-01.
|u https://juser.fz-juelich.de/record/856464/files/Influence%20of%20steam%20atmosphere%20on%20the%20crack%20propagation%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic_martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20depending%20on%20frequen.pdf
856 4 _ |y Published on 2018-10-01. Available in OpenAccess from 2020-10-01.
|x pdfa
|u https://juser.fz-juelich.de/record/856464/files/Influence%20of%20steam%20atmosphere%20on%20the%20crack%20propagation%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic_martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20depending%20on%20frequen.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:856464
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129742
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J FATIGUE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21