000856465 001__ 856465
000856465 005__ 20240711092233.0
000856465 0247_ $$2doi$$a10.1016/j.ijfatigue.2018.03.012
000856465 0247_ $$2ISSN$$a0142-1123
000856465 0247_ $$2ISSN$$a1879-3452
000856465 0247_ $$2WOS$$aWOS:000432645700016
000856465 0247_ $$2Handle$$a2128/24795
000856465 037__ $$aFZJ-2018-05859
000856465 082__ $$a600
000856465 1001_ $$0P:(DE-Juel1)161596$$aFischer, T.$$b0$$eCorresponding author$$ufzj
000856465 245__ $$aFrequency and Hold Time Influence on Crack Growth Behavior of a 9–12% Cr Ferritic Martensitic Steel at Temperatures From 300 °C to 600 °C in air
000856465 260__ $$aOxford$$bElsevier$$c2018
000856465 3367_ $$2DRIVER$$aarticle
000856465 3367_ $$2DataCite$$aOutput Types/Journal article
000856465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539696935_6842
000856465 3367_ $$2BibTeX$$aARTICLE
000856465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856465 3367_ $$00$$2EndNote$$aJournal Article
000856465 520__ $$aDue to an increase of renewable energies proportion, e.g. wind power and photovoltaics, which cannot supply energy constantly, modern power plants must be able to be operated flexibly in order to compensate the residual load. As a consequence of increasing alternating load, fatigue damage becomes more and more important, while creep damage caused by ever shorter holding times at high operating temperature decreases. In this study a turbine bypass valve, one of the most fatigue loaded power plant components, manufactured from widespread standard 12% Cr ferritic/martensitic steel X20 was investigated. Fatigue crack growth experiments showed that the crack growth rate increases slightly with decreasing frequency (20 Hz → 5 Hz). In hold time tests (300 s → 600 s, effective frequency 3.33 × 10−3 Hz → 8.33 × 10−4), larger crack propagation rates per cycle occur than in the fatigue crack growth experiments with 5 and 20 Hz. In comparison to pure cyclic loading maximum load holding time further required significantly higher ΔK values to start crack growth.
000856465 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856465 588__ $$aDataset connected to CrossRef
000856465 7001_ $$0P:(DE-Juel1)129742$$aKuhn, B.$$b1$$ufzj
000856465 773__ $$0PERI:(DE-600)2013377-7$$a10.1016/j.ijfatigue.2018.03.012$$gVol. 112, p. 165 - 172$$p165 - 172$$tInternational journal of fatigue$$v112$$x0142-1123$$y2018
000856465 8564_ $$uhttps://juser.fz-juelich.de/record/856465/files/1-s2.0-S0142112318300963-main.pdf$$yRestricted
000856465 8564_ $$uhttps://juser.fz-juelich.de/record/856465/files/1-s2.0-S0142112318300963-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856465 8564_ $$uhttps://juser.fz-juelich.de/record/856465/files/Final%20draft%20Frequency%20and%20hold%20time%20influence%20on%20crack%20growth%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic%20martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20in%20air.pdf$$yPublished on 2018-03-15. Available in OpenAccess from 2020-03-15.
000856465 8564_ $$uhttps://juser.fz-juelich.de/record/856465/files/Final%20draft%20Frequency%20and%20hold%20time%20influence%20on%20crack%20growth%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic%20martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20in%20air.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-03-15. Available in OpenAccess from 2020-03-15.
000856465 909CO $$ooai:juser.fz-juelich.de:856465$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161596$$aForschungszentrum Jülich$$b0$$kFZJ
000856465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ
000856465 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856465 9141_ $$y2018
000856465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856465 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000856465 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856465 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000856465 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J FATIGUE : 2017
000856465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856465 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856465 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856465 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856465 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856465 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856465 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000856465 9801_ $$aFullTexts
000856465 980__ $$ajournal
000856465 980__ $$aVDB
000856465 980__ $$aUNRESTRICTED
000856465 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856465 981__ $$aI:(DE-Juel1)IMD-1-20101013