001     856465
005     20240711092233.0
024 7 _ |a 10.1016/j.ijfatigue.2018.03.012
|2 doi
024 7 _ |a 0142-1123
|2 ISSN
024 7 _ |a 1879-3452
|2 ISSN
024 7 _ |a WOS:000432645700016
|2 WOS
024 7 _ |a 2128/24795
|2 Handle
037 _ _ |a FZJ-2018-05859
082 _ _ |a 600
100 1 _ |a Fischer, T.
|0 P:(DE-Juel1)161596
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Frequency and Hold Time Influence on Crack Growth Behavior of a 9–12% Cr Ferritic Martensitic Steel at Temperatures From 300 °C to 600 °C in air
260 _ _ |a Oxford
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539696935_6842
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to an increase of renewable energies proportion, e.g. wind power and photovoltaics, which cannot supply energy constantly, modern power plants must be able to be operated flexibly in order to compensate the residual load. As a consequence of increasing alternating load, fatigue damage becomes more and more important, while creep damage caused by ever shorter holding times at high operating temperature decreases. In this study a turbine bypass valve, one of the most fatigue loaded power plant components, manufactured from widespread standard 12% Cr ferritic/martensitic steel X20 was investigated. Fatigue crack growth experiments showed that the crack growth rate increases slightly with decreasing frequency (20 Hz → 5 Hz). In hold time tests (300 s → 600 s, effective frequency 3.33 × 10−3 Hz → 8.33 × 10−4), larger crack propagation rates per cycle occur than in the fatigue crack growth experiments with 5 and 20 Hz. In comparison to pure cyclic loading maximum load holding time further required significantly higher ΔK values to start crack growth.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kuhn, B.
|0 P:(DE-Juel1)129742
|b 1
|u fzj
773 _ _ |a 10.1016/j.ijfatigue.2018.03.012
|g Vol. 112, p. 165 - 172
|0 PERI:(DE-600)2013377-7
|p 165 - 172
|t International journal of fatigue
|v 112
|y 2018
|x 0142-1123
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/856465/files/1-s2.0-S0142112318300963-main.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/856465/files/1-s2.0-S0142112318300963-main.pdf?subformat=pdfa
856 4 _ |y Published on 2018-03-15. Available in OpenAccess from 2020-03-15.
|u https://juser.fz-juelich.de/record/856465/files/Final%20draft%20Frequency%20and%20hold%20time%20influence%20on%20crack%20growth%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic%20martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20in%20air.pdf
856 4 _ |y Published on 2018-03-15. Available in OpenAccess from 2020-03-15.
|x pdfa
|u https://juser.fz-juelich.de/record/856465/files/Final%20draft%20Frequency%20and%20hold%20time%20influence%20on%20crack%20growth%20behavior%20of%20a%209%20-%2012%20%25%20Cr%20ferritic%20martensitic%20steel%20at%20temperatures%20from%20300%20C%20to%20600%20C%20in%20air.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:856465
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129742
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J FATIGUE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21