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Abstract 

Plant roots have major roles in plant anchorage, resource acquisition and offer 
environmental benefits including carbon sequestration and soil erosion 
mitigation. As such, the study of root system architecture, anatomy and 
functional properties is of crucial interest to plant breeding, with the aim of 
sustainable yield production and environmental stewardship.  
Due to  the importance of the root system studies, there is a  need for 
clarification of terms and concepts in the root phenotyping community. In 
particular in this contribution, we advocate for the use of a reference naming 
system (ontologies) for roots and root phenes. Such uniformity would not only 
allow better understanding of research results, but would also enable a better 
sharing of data. In addition, we highlight the need to incorporate the concept of 
plasticity in breeding programs, as it is an essential component of root system 
development in heterogeneous environments.  
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1. Definitions 

The study of root system morphology, anatomy and spatial distribution (root 
architecture) is challenging due the “hidden” nature of these organs and their 
complexity. Recent interest in root phenotyping and genetics has enabled the 
creation of new terminology that describes root phenotypes, structures, and 
functions.  For instance, the Planteome website ​http://planteome.org/​) ​[1]​ is a 
useful tool for plant scientists to unify terminology. This integrative initiative 
aims to bring together common annotations or standards and a group of 
reference ontologies for plants, with the desire that they will be used by 
researchers as a common language and will facilitate the integrated analysis of 
large data sets from different data repositories. Plant Trait Ontology is one of the 
reference ontologies that can be found at Planteome site, and describes specific 
measurable phenes, although the list of root traits focuses on architectural 
features is so far omitting any physiological root traits.   
 
It would be advantageous to use tools like the previous-mentioned ones in 
publications and at conferences to standardise the use of root nomenclature, in 
order to speak the same language within the root phenotyping community. 
Despite the obvious gain that a systematized nomenclature can bring to the 
scientific community, a consistent application of standard root terminology has 
not yet been achieved. For instance, discrepancies in the name of root types can 
even be found in the same plant species between publications. Efforts have been 
made in this regard, leading to a root system architectural taxonomy that defines 
the main roots classes present in nature: taproots, lateral roots, shoot-borne 
roots and basal roots; considering the origin of the root type ​[2]​. There are also 
studies that aim to establish the definition of specific root phenes, such as root 
insertion angle and its components, along with different methods for analysing 
their plastic response under different environmental conditions ​[3,4]​.  
 
The lack of adoption of common terminology might be due to an unawareness of 
such resources by researchers, or an inadequacy between the existing terms and 
researchers needs. With the ever-increasing use of phenotypic techniques that 
enable imaging, quantification and modelling of complex root systems by 
studying phenes at macro and micro scale, the need to integrate biology and 
computational methodologies is increasingly apparent ​[5]​. Therefore, there is a 
demand (and a need) to create a common language where these two disciplines 
can start a successful dialogue, leading to a better understanding of plant 
morphology and development ​[6]​. Efforts and discussions throughout the entire 
community are needed to achieve such a goal.  
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2. Plasticity 

Successful crop varieties are often selected in a specific soil type, climate, and 
agricultural management practice, a static environment where a specific root 
ideotype can be effective for crop yield. However, decreasing freshwater 
availability, rising costs of fuel and nitrogen fertilizer and unpredictable growing 
environments due to climate change require the development of crop varieties 
that are increasingly adaptable in order to maintain high and stable yields ​[7–10]​. 
Phenotypic plasticity and Genotype and Environment (G x E) interaction have 
often been considered a challenge in phenotyping and breeding programs 
[11,12]​. Modern breeding programs and agricultural productivity have typically 
been focused on selecting varieties with greater stability and uniformity rather 
than highly plastic genotypes, but perspectives on that are changing ​[13,14]​. The 
identification of environmental sensing genes may enable targeted breeding for 
phenotypic plasticity​ ​[15]​.​The development of new crop varieties can take years, 
and therefore selection of performance in the current environment may not 
hold-up in future environments and climates. Crop varieties able to adapt their 
growth in response to environmental cues may be a breeding target for 
addressing the growing world food demand, particularly in low input agriculture 
areas ​[16]​.  
 
Phenotypic plasticity is the ability of an organism to change its phenotype in 
response to environmental cues ​[15]​  and does not explicitly improve plant 
performance or survival. Plastic responses may be of short or long duration. For 
example, the final diameter of a root is established after tissue growth, and while 
growing tissues may respond to the local environment, mature tissue does not. In 
contrast, expression of nitrate transporters may change to track environmental 
signals that fluctuate on short time scales. Phenotypic plasticity may be 
allocational, morphological, anatomical, or developmental ​[17]​, is under genetic 
control (e.g. ​[7]​), and encompasses components of the interaction between 
genotype and environment, adaptation, and acclimation.  
 
G x E interaction, or the differential response of genotypes to different 
environmental signals, is a type of plasticity. However, plasticity does not always 
imply a G x E interaction. Acclimation and adaptation are also types of plasticity 
that can have a G x E response as well, (Fig. 1) but are usually considered to be a 
plastic response that enhances plant fitness and survival. Adaptation is the shift 
in genotypes and/or phenotypes over generations that facilitates enhanced 
fitness in a specific environment. Acclimation, is the physiological, biochemical, 
or morphological modifications to a phenotype that results from environmental 
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challenges. However, these terms are not exclusive, for example, phenotypic 
plasticity can be adaptive and also have a G x E component ​[18,19]​. 
 
Depending on the environment, plants with a greater plasticity may have an 
advantage over plants with low plasticity (e.g. ​[20]​). Root system architecture has 
been demonstrated to have large implications in plant stress tolerance and 
performance, and specific components of this architecture may have a plastic 
response to the environment ​[21]​. In drought conditions, plasticity in root length 
density, total root length ​[22,23]​ and lateral root length and density ​[24,25] 
improve shoot biomass, water uptake, and photosynthesis in rice. In legumes, 
symbiotic interactions with different rhizobium species resulted in a plastic 
response of root length and lateral root density ​[26]​.​ In soybean, metaxylem 
number increased under drought conditions improved root hydraulic conductivity, 
which reduces the metabolic cost of exploring water in deeper soil domains and 
enhanced water transport ​[27]​. High yield stability has been shown to correlate 
with high root plasticity in drought and low phosphorus environments in rice ​[7] 
and phenological plasticity in wheat, sunflower, and grapevine ​[28]​. In variable 
phosphorus supply, tap and fibrous root systems had different physiological 
(exudates) and morphological (surface area) plasticity responses ​[29]​. 
Phenotypic plasticity may improve plant performance in variable environments 
and be an effective future breeding target. 
 
In certain scenarios, phenotypic plasticity may also be maladaptive. For example, 
proliferation of lateral branches in response to localized patches of nutrients 
[30,31]​ may be beneficial for nitrogen capture ​[32]​, but potentially also 
maladaptive if mobile resources (such as nitrogen) move through the soil profile 
faster than roots can proliferate. It is also interesting to note that a recent meta 
analysis on invasive species has shown that under high resource environments, 
an increased plasticity was not correlated with increased fitness ​[33]​. 
Understanding phenotypic plasticity and its genetic control may enable the 
selection of lines with greater or reduced plasticity to enhance plant productivity 
in specific environments.  
 
Previous research has brought to light the idea of root system ideotypes, often 
meant as specific architectural traits suitable for the capture of specific soil 
resources in specific environments. Root architectural phenes have been 
demonstrated to be successful in specific environments, but can be functionally 
maladaptive in variable or non-target environments ​[34,35]​. In the field, the plants 
may be exposed to multiple, simultaneous stresses. In environments with 
multiple, dynamic stresses that vary year-to-year, a phenotypically plastic root 
system may be the ideal ideotype for stable and high yielding crops. Immense 
untapped potential exists for exploiting phenotypic plasticity to enhance 
productivity of agricultural crops. The knowledge of the molecular mechanisms 
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and the genes underlying root plasticity can contribute as tools for breeders to 
develop varieties better adapted to a wide range of environments. However, this 
requires the measurement of roots (and shoots) under contrasting and dynamic 
environments and even future climate scenarios. This, in turn, is based on 
respective technological developments for climatization in plant growth rooms 
and for root imaging and analyses. 

 

 

Figure 1​. ​Schematic of plastic responses​. Plasticity can be adaptive, neutral, or maladaptive, may 
fluctuate temporally, and may have a G x E component. Phenotypic plasticity may be allocational, 

morphological, anatomical, or developmental.  
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