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Understanding electron magnetic circular dichroism in a transition potential approach
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This paper introduces an approach based on transition potentials for inelastic scattering to understand the

underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently

localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail

in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries

which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission

electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.
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I. INTRODUCTION

Electron magnetic circular dichroism (EMCD) [1], an effect
seen in electron energy-loss spectroscopy (EELS) [2], is a
promising technique for studying magnetic materials in the
electron microscope. In an EMCD experiment in a microscope
equipped with an energy filter, the EELS spectrum probes the
density of free states as a function of energy loss and momen-
tum transfer. By comparing spectra at a given energy loss, but
for a detector placed sequentially at two different symmetry-
related positions in the diffraction plane, information on the
magnetic properties of the specimen can be accessed. In
principle, detailed analysis of the difference spectrum yields
information on the magnetic properties of the atoms in the

*lja@unimelb.edu.au

specimen [3,4]. Since the energy of each transition depends
on the bonding and also the atomic number, element-specific
information is obtained. Furthermore, EMCD in the electron
microscope has a higher spatial resolution and greater depth
sensitivity than x-ray magnetic circular dichroism (XMCD)
[5–7]. Moreover, detecting magnetic properties with atomic-
sized electron probes is now feasible [8–13].

The EMCD effect is usually understood by drawing analo-
gies with XMCD. This was first discussed in the seminal
paper by Hébert and Schattschneider [14], with the first
experimental confirmation of EMCD following three years
later [1]. An appeal is usually made to a picture involving
“virtual photons” with specific circular polarization, resulting
in spectral differences which are a maximum when a virtual
photon with left circular polarization and one with right circular
polarization are absorbed [15]. For transition metals such as
iron, cobalt, and nickel, EELS for EMCD focusses on the L
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edge, corresponding to the excitation of a 2p electron to an
unoccupied 3d state. In particular, L2,3 EMCD in the transition
metals arises primarily due to spin-orbital splitting [16] of the
core level, 2p → 2 p1/2 and 2p3/2, and the fact that 3d valence
states with spin up are preferentially occupied and have lower
energy than those with spin down. The unequal occupation
of spin-up and spin-down states is the origin of the magnetic
properties of these metals.

In this work we adopt an approach based on transition
potentials for inelastic scattering of electrons that provides
a different perspective on the underlying physics of EMCD.
Transition potentials are implicit in theoretical formulations
of EMCD in terms of mixed dynamic form factors or density
matrices, for instance, the approach described in the book by
Schattschneider [17], which is also a rich source of further
references, and more particularly, for example, in Refs. [18–
20]. Here we will explicitly consider the transition potentials
themselves to provide a different perspective yielding further
insight and understanding of the physics of EMCD. Considera-
tion of the localization of the transition potentials confirms that
atomic-scale EMCD is possible. The cases of two-beam and
three-beam systematic rows of reflections in the diffraction
plane, usually employed in EMCD experiments with con-
ventional transmission electron microscopy (CTEM), are dis-
cussed within the transition potential framework. Fundamental
symmetries seen in the formalism in the CTEM three-beam
case are shown to be consistent with experimental data taken
on NiFe2O4. We discuss the acquisition of atomic-scale EMCD
in scanning transmission electron microscopy (STEM) for
two different setups. First, we consider sequentially recorded
images using a standard STEM probe for two symmetry-
related off-axis detector positions to obtain a difference signal.
Second, we explore the use of two images using vortex probes
[21,22] with opposite chirality for a detector symmetrically
placed about the optical axis. In the context of EMCD, by a
detector we mean an electron energy-loss spectrometer, and
the “detector position” in the diffraction plane is selected by
shifting the diffraction pattern with respect to the spectrometer
entrance aperture. Usually only one such spectrometer is
available on a microscope and the data is recorded sequentially.

II. TRANSITION POTENTIALS

Our starting point is the following equation for the potential
describing the inelastic transition of the target electron from an
occupied initial state, labeled 0, to an unoccupied final state,
labeled n, via a Coulomb interaction:

Hn0(r) =
e2

4πε0

∫

u∗
n(r′)

1

|r − r′|
u0(r′)dr′ . (1)

Let us define the interaction constant σn = m/(2πh̄2kn), with
m the relativistically corrected mass of the incident electron,
h̄ the reduced Planck constant, and kn the wave number of
the incident electron after it has excited the system to the
state n. Then, for a suitably normalized incident plane wave,
σ 2

n |Hn0(r)|2 is the probability that the inelastic transition will
occur. The position vectors r and r′ are in three dimensions. The
prefactor contains the magnitude of the charge of an electron
e and the permittivity of free space ε0, which tacitly assumes
that the Coulomb interaction is not modified by the surrounding

charge distribution in the specimen. Furthermore, we consider
the excitation of a single atom with the electron initially in an
atomic bound state, so that the initial state in Eq. (1) can be
represented by [23]

u0(r) =
un,l(r)

r
Yj=l± 1

2
,m(θ,φ) . (2)

The radial wave function un,l(r) (real) is characterized in terms
of the principal quantum number n [which should not be
confused with the label n for a final state in Eq. (1)] and the
angular momentum quantum number l. Taking into account
spin-orbit coupling, the spin-angular functionsYj=l± 1

2
,m(θ,φ),

θ and φ polar and azimuthal angles, respectively, are defined
in terms of spherical harmonics Yl,m∓ 1

2
as

Yj=l± 1
2
,m(θ,φ) = ±

√

l ± m + 1
2

2l + 1
Yl,m− 1

2
(θ,φ)χ+

+

√

l ∓ m + 1
2

2l + 1
Yl,m+ 1

2
(θ,φ)χ−, (3)

where m is the magnetic quantum number associated with the
total angular momentum quantum number j [16]. Generically,
we denote the initial state for the bound target electron by the
set of quantum numbers {n,l,j,m}. The spinors χ± correspond
to spin up (+) and spin down (−). Similarly, the final state may
be expressed as

un(r) =
un′,l′(r)

r
Yj ′=l′± 1

2
,m′ (θ,φ) (4)

in terms of the quantum numbers {n′,l′,j ′,m′}. These are
atomic final states and are therefore associated with a particular
atom. However, we assume that the occupancy of these final
states is influenced by how that atom is bonded in the specimen.

The Fourier transform of Eq. (1) may be written as

Hn0(q) =
e2

4πε0

1

πq2

∫

u∗
n(r) exp(−2πiq · r)u0(r)dr , (5)

where we have used the standard identity
∫

exp(−2πiq · r)

|r − r′|
dr =

exp(−2πiq · r′)

πq2
. (6)

To illustrate and understand the physics underlying EMCD, it
will suffice to expand the exponential in Eq. (5) to first order,
namely,

Hn0(q) = −
e2

4πε0

2iq

q2
·

∫

u∗
n(r) r u0(r)dr. (7)

This approximation [24] assumes that q is small and that the
initial and/or final states are sufficiently localized so that the
integrand is small for vectors r with a large magnitude. These
transition potentials are only nonzero if the dipole selection
rules �j = ±1, �m = 0,±1 are satisfied and the spin is
conserved.

As an example, let us consider the L2 transition from the
initial state 0 ≡ {2,1, 1

2
, 1

2
} in the 2p shell to the final state

n ≡ {3,2, 3
2
, 3

2
} in the 3d shell. Furthermore, we assume that

the electron initially has spin down and so does the final state,
consistent with the dipole selection rule that this should not
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change. Then the pertinent spherical harmonics from Eq. (3)
for the initial and final states, respectively, are

Y1,1(θ,φ) = −
1

2

√

3

2π
sin θ exp(iφ) and

Y2,2(θ,φ) =
1

4

√

15

2π
sin2θ exp(2iφ) , (8)

since only the spin-down terms in Eq. (3) contribute. In the
same spherical coordinate system, r in Eq. (7) is given by

r = r(sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ) , (9)

in terms of the usual orthonormal basis vectors for a Cartesian
coordinate system. Then Eq. (7) becomes

Hn0(q) =
e2

4πε0

3
√

5

16π

∫ ∞

0

u3,2(r)u2,1(r)rdr

×
2iq

q2
·

∫ 2π

0

∫ π

0

sin3 θ exp(−iφ)(sin θ cos φ x̂

+ sin θ sin φ ŷ + cos θ ẑ) sin θdθdφ . (10)

Evaluating the angular integrations, we obtain

H+
n0(q) =

e2

4πε0

∫ ∞

0

u3,2(r)u2,1(r)rdr

×
2q

q2
·

4
√

3
√

450
(ix̂ + ŷ)

≡ F+
n0

q

q2
· (ix̂ + ŷ) = F+

n0

iqx + qy

q2
, (11)

where the superscript “+” has been inserted on the transition
potential H+

n0 and the prefactor F+
n0 to explicitly denote that for

this transition �m = +1. The generic symbol F+
n0 introduced

here represents the general constants, the radial integration, and
elements of the angular integration pertinent to a particular
case. Other dipole-allowed 2p-to-3d transitions with �m =
+1 yield transition potentials of a similar form to those in
Eq. (11): only the constant after the dot product in the second

line varies. The factor of
√

450 in the denominator of that
constant is the lowest common multiple for all the �m = +1
transitions, as it is for the �m = −1 transitions, which we
will consider next. The numerators can thus be used to get a
measure of the relative strength of these transitions.

The transitions with �m = −1, denoted by a superscript
“−,” have transition potentials of the form

H−
n0(q) = F−

n0

q

q2
· (ix̂ − ŷ) = F−

n0

iqx − qy

q2
. (12)

The projected transition potential Hn0(r⊥) is obtained by
integrating the three-dimensional quantity in Eq. (1) over a
suitable interval about the plane at z as follows [25–28]:

Hn0(r⊥) =
∫

Hn0(r⊥,z′)e2πi(k0−kn)z′
dz′ , (13)

where k0 is the wave number of the incident electron, and kn

is its wave number after the inelastic transition (kn < k0). The
projection can be carried out by taking the inverse Fourier
transform of the three-dimensional potential with respect to
q⊥ = (qx,qy,0), the Fourier space variable conjugate to r⊥,

while fixing qz = k0 − kn, noting that qz is positive and a small
scattering angle approximation is implied. Using Eqs. (11) and
(12) we can then write

H±
n0(r⊥) = 2πF±

n0r̂⊥·(−x̂ ± iŷ)qzK1(2πqzr⊥) , (14)

where r⊥ = (x,y,0) and we note that r̂⊥·(−x̂ ± iŷ) =
−exp(∓iϕ), where ϕ is the angle from the positive x axis
towards the y axis. The function K1 is a modified Bessel
function of the second kind. A subtle point to note is that this
assumes that the atom is orientated such that the direction of
travel of the incoming beam of electrons coincides with the axis
with respect to which the magnetic quantum number is defined.
We will not elaborate on this further here, except to note that
this is pertinent when detecting in-plane magnetization [29].
For the details of how this Fourier transform can be done, we
refer the reader to Eq. (14) in Ref. [30], where the substitution
εκ
⊥ = ix̂ ± ŷ in that equation yields the required result. In a

similar way we can show that the transition potentials for
transitions with �m = 0 are of the form

H 0
n0(q) = F 0

n0

qz

q2
, (15)

so that in real space

H 0
n0(r⊥) = 2πF 0

n0qzK0(2πqzr⊥) , (16)

where K0 is a modified Bessel function of the second kind.
Figure 1(a) shows the amplitude and the phases of r̂⊥·(−x̂ ±

iŷ)qzK1(2πqzr⊥) corresponding to �m = ±1. In each case,
the phase is consistent with there being a vortex structure
but with differing chirality. Also shown is qzK0(2πqzr⊥),
and in that case the phase is a constant. The amplitudes
have been scaled in the ratio that they contribute as outlined
in the discussion of Fig. 2 in Sec. III. It is clear from the
amplitude that the localization of the projected transition
potentials in real space is determined by qz ≈ k0Eloss/2E0,
where E0 denotes the energy of the incident electron and
Eloss its energy loss [31]. We have assumed an energy loss of
715 eV (the approximate energy loss for the Fe L2,3 inelastic
transition) and an incident electron energy of 200 keV (qz ≈
40 Å

−1 × 0.715 keV/400 keV ≈ 0.07 Å
−1

) in calculating the

amplitudes in Fig. 1(a). The diameter d50 = 3.6 Å marked
in Fig. 1(a) contains 50% of the total potential amplitude
|H±

n0(r⊥)|, evaluated by integrating in two dimensions. In
Fig. 1(b), d50 and d95 are plotted for a range of energy losses and
incident electron energies relevant in CTEM and STEM EELS.
As expected, the larger the energy loss, the more localized
is the transition potential in real space. Since qz is inversely
proportional to E0, we also see increasing localization with
decreasing incident electron energy for a fixed energy loss.
The transition amplitudes |H 0

n0(r⊥)| actually have slightly
larger values of d50 and d95, but in what follows the |H±

n0(r⊥)|
contributions will be more important. The results shown in
Fig. 1(b), especially those for a diameter d50, are consistent
with atomic-scale information being accessible using EMCD.

III. THE PHYSICS OF THE EMCD EFFECT

We start from a fundamental equation for an inelastic
scattering event from an initial state 0 to a final state n occurring
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FIG. 1. (a) The common amplitude (solid curve) and the phase

maps (inset) of the transition potentials H±
n0(r⊥) showing the localiza-

tion as well as the vortex structure in their phases. The reversal of the

azimuthal phase ramp in the insets, which increases in the direction

of the arrows, reflects the different sign of the topological charge

(chirality) occurring in the respective transitions with �m = +1 and

�m = −1. Also shown (dashed curve) is H 0
n0 (�m = 0), scaled as

discussed in the text, and for which the phase is a constant. The

amplitudes in (a) correspond to an Fe L2,3 inelastic transition with

an energy loss around 715 eV and for an incident electron energy of

200 keV. The double-headed arrow indicates the diameter d50 = 3.6

Å containing 50% of the total potential amplitude for the H±
n0(r⊥)

cases. (b) The diameters d50 and d95 are plotted for different incident

electron energies and for a range of energy losses relevant in CTEM

and STEM EELS experiments.

at a depth z in a specimen [25–28]:

ψn(r⊥,z) = −iσnHn0(r⊥)ψ0(r⊥,z) . (17)

Here ψ0(r⊥,z) is the wave function of the incident probe
electron before the inelastic transition and ψn(r⊥,z) describes
this electron after the inelastic scattering event. The interaction
constant σn in Eq. (17) was introduced after Eq. (1).

Using the convolution theorem, the two-dimensional
Fourier transform of Eq. (17) can be written as

ψn(q⊥,z) = −iσn

∫

Hn0(q′
⊥)ψ0(q⊥ − q′

⊥,z)dq′
⊥ . (18)

The contribution to the signal from the inelastic transition 0 →
n at a point q⊥ in the diffraction plane can then be expressed
as

|ψn(q⊥,z)|2 = σ 2
n

∫∫

H ∗
n0(q′

⊥)Hn0(q′′
⊥)

× ψ∗
0 (q⊥ − q′

⊥,z)ψ0(q⊥ − q′′
⊥,z)dq′

⊥dq′′
⊥

FIG. 2. Schematic L2 transition scheme illustrating dipole-

allowed transitions with �m = +1 (red solid lines), �m = −1 (blue

dashed lines), and �m = 0 (solid black lines). L2 transitions blocked

by occupation of final states assuming a fully spin-up polarized

material, denoted by the “prohibited” signs, lead to an imbalance

in the strength of transitions with �m = +1 (stronger) compared to

those with �m = −1 (weaker). The relative strengths shown refer to

the amplitude of each transition, as discussed in the paragraph after

that containing Eq. (11).

≈ σ 2
n

∑

q′
⊥,q′′

⊥

H ∗
n0(q′

⊥)Hn0(q′′
⊥)

× ψ∗
0 (q⊥ − q′

⊥,z)ψ0(q⊥ − q′′
⊥,z) , (19)

where the integrations have been written in a discretized form.
This assumes that the outgoing waves after inelastic scattering
do not channel in the specimen. For the case of transitions with
�m = ±1, those pertinent to EMCD, the products of transition
potentials that occur in the previous equation can be written,
using Eqs. (11) and (12), as

H±∗
n0 (q′

⊥)H±
n0(q′′

⊥)

=
[

F±
n0

]2

[

q′
⊥ · q′′

⊥
q ′2q ′′2 ∓ i

(q′
⊥ × q′′

⊥) · ẑ

q ′2q ′′2

]

≡ A±
n0(q′

⊥,q′′
⊥) ∓ iB±

n0(q′
⊥,q′′

⊥) . (20)

The first term A±
n0 in the large square brackets in the second

line of Eq. (20) is symmetric with respect to interchange of
q′

⊥ and q′′
⊥ and is the same for transitions with �m = ±1.

However the second term B±
n0 in the same square brackets,

containing the cross product, is antisymmetric with respect to
the interchange of q′

⊥ and q′′
⊥ and is of opposite sign for the

�m = +1 and �m = −1 cases. We have chosen to indicate
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the arguments of A±
n0 and B±

n0 as q′
⊥ and q′′

⊥, but we emphasize
that the scalar quantities q ′ and q ′′ still contain a qz component.
We also note that such products of transition potentials can be
related to the mixed dynamic form factor that occurs in inelastic
scattering [17,28,32], a quantity which has been used in other
work on EMCD [1,14,17,33,34]. Note the formal similarity
with Eq. (12) in Ref. [34].

If the sum over contributions from all transitions with
�m = +1 is the same as that from transitions with �m = −1,
for a given atom, then the contributions from the antisymmetric
terms will cancel. However, in a magnetic atom where a
fraction of the 3d states is already filled with electrons with
spin up, this will not be the case. For simplicity, let us assume
that half of the 3d states are filled with electrons with spin
up. Then, consistent with the dipole selection rule that spin
should not change in a transition, only transitions from initial
states with spin down to final states with spin down can
occur. This means that the L2 transition 0 ≡ {2,1, 1

2
, 1

2
} →

n ≡ {3,2, 3
2
, 3

2
} explicitly evaluated in Sec. II is an example of

an allowed transition. Initial and final states with spin down
imply that in calculating a transition the first term on the
right-hand side of Eq. (3) does not contribute in each case.
This has the consequence that the contribution from �m = ±1
transitions will be of a different strength, as illustrated in
Fig. 2. The relative transition strengths shown are calculated by
performing the spin-angular part of the integration implicit in
Eq. (7). In Eq. (11) this is the factor 4

√
3. Angular components

of the initial and final states are calculated using Eq. (3) while
taking into account which spin states may contribute, i.e., only
spin-down states in our example. In this scenario transition
probabilities for allowed L2 transitions with �m = +1 are
8.1 times larger than those with �m = −1, as calculated by
summing up the squared strengths of the allowed transitions in
Fig. 2. Similarly, once again assuming that all 3d states with
spin up are filled and all those with spin down unfilled, we can
calculate the ratio of transition probabilities for L3 transitions
with �m = +1 to those with �m = −1 as 0.6. While a more
elaborate model may be needed to calculate these ratios more
accurately, the fact that the first ratio is greater than unity and
the second less than unity is consistent with the opposite sign
of the EMCD effect observed in the experiment for L2 and L3

transitions. These considerations are the essence of the EMCD
effect.

Measuring the energy-loss signal at two points in the
diffraction plane, where first q′

⊥ × q′′
⊥ occurs in Eq. (20)

and then second q′′
⊥ × q′

⊥, and subtracting these signals then
leads to a difference signal which indicates the presence of
magnetization and in principle allows one to determine its
magnitude. We will discuss this more explicitly in the next
section. In STEM one can also exploit this asymmetry by
scanning the probe, as will be discussed in Sec. V.

IV. ELECTRON MAGNETIC CIRCULAR DICHROISM IN

CONVENTIONAL TRANSMISSION ELECTRON

MICROSCOPY

Let us now assume that we are in the context of conventional
transmission electron microscopy with plane-wave illumina-
tion. It is then convenient to write the probe wave function

ψ0(r⊥,z) in the crystal in terms of Bloch states as [35]

ψ0(r⊥,z) =
∑

G

∑

j

αjC
j

G exp(2πiγ jz) exp(2πiG · r⊥) ,

(21)

where, without loss of generality, an overall phase factor
exp(2πiKz), with K the wave number of the incident electron
corrected for refraction, has been ignored. The G are reciprocal

lattice vectors, αj is the amplitude of Bloch state j , C
j

G are
components of the eigenvector for state j , and γ j are related
to the eigenvalues. Defining

CG(z) =
∑

j

αjC
j

G exp(2πiγ jz) , (22)

we can write

ψ0(r⊥,z) =
∑

G

CG(z) exp(2πiG · r⊥) . (23)

From this Fourier expansion it is clear that the Fourier co-
efficients are only nonzero at the physical reciprocal lattice
points G. Therefore the arguments in the probe wave function
in Eq. (19) should be written as

q⊥ − q′
⊥ = G, q⊥ − q′′

⊥ = H (24)

and the discretized form of Eq. (19) reduces to

|ψn(q⊥,z)|2 = σ 2
n

∑

G,H

H ∗
n0(q⊥ − G)Hn0(q⊥ − H)

× |CG(z)||CH(z)| exp{i[φH(z) − φG(z)]} ,

(25)

whereφG(z) andφH(z) are the phases of the Fourier coefficients
CG(z) and CH(z) given by Eq. (22). This can now be written
in the form

|ψn(q⊥,z)|2 = σ 2
n

∑

G

|CG|2|Hn0(q⊥ − G)|2

+ σ 2
n

∑

G �=H

|CG(z)||CH(z)|ℜ{exp[i(φH(z)

− φG(z))]H ∗
n0(q⊥ − G)Hn0(q⊥ − H)} , (26)

where the first term on the right-hand side contains the diagonal
terms in the summation in Eq. (25). The ℜ denotes the real
part of the quantity in curly brackets and is obtained by adding
“off-diagonal” complex conjugate quantities in Eq. (25).

A. Two-beam case

If we now consider a simple two-beam case (0 and G),
conditions that can be realized experimentally to a good
approximation, then Eq. (26) reduces to

|ψn(q⊥,z)|2 = σ 2
n [|C0(z)|2|Hn0(q⊥)|2 + |CG|2|Hn0(q⊥−G)|2]

+ 2σ 2
n |C0(z)||CG(z)|ℜ{exp[i(φG(z) − φ0(z))]

× H ∗
n0(q⊥)Hn0(q⊥ − G)} . (27)

Referring once again specifically to transitions with �m =
±1, these will contribute to the signal at a point q⊥ via
factors in the second summation in Eq. (26) of the form
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FIG. 3. Two-beam conditions for CTEM showing the various

vectors in the upper half-plane (solid lines) and lower half-plane

(dashed lines) that are pertinent to Eqs. (29)–(31). The Thales

circle is the locus of all points for which (α,β) and (α − 1,β) are

orthogonal.

ℜ[exp(iφ)H±∗
n0 (q′

⊥)H±
n0(q′′

⊥)], where φ = φH(z) − φG(z) is a
phase difference which varies as a function of depth z. Using
Eq. (20), these factors can be written in the form

ℜ[exp(iφ)H±∗
n0 (q′

⊥)H±
n0(q′′

⊥)]

= [F±
n0]2

[

cos φ
q′

⊥ · q′′
⊥

q ′2q ′′2 ± sin φ
(q′

⊥ × q′′
⊥) · ẑ

q ′2q ′′2

]

= cos φ A±
n0 ± sin φ B±

n0 . (28)

For the two-beam case, let us consider a point q⊥ in the
diffraction plane in the first quadrant and express this in units
of the magnitude of G in the short-hand notation q⊥ ≡ (α,β),
as indicated in Fig. 3. The Thales circle [1,15] shown in Fig. 3
is the locus of all points for which (α,β) and (α − 1,β) are
orthogonal. At the points (1/2, ±1/2) indicated, these vectors
have equal magnitude and are optimal choices for measuring
the EMCD difference signal.

Let us consider the “off-diagonal” contributions in Eq. (27)
from the transitions with �m = ±1. Summing these contri-
butions and assuming G is on the positive qx axis, we may
write

∑

n

|ψ+
n (α,β)|2 +

∑

n′

|ψ−
n′ (α,β)|2

= 2|C0||CG|
∑

n

σ 2
n [cos φ A+

n0((α,β),(α − 1,β))

+ sin φ B+
n0((α,β),(α − 1,β))]

+ 2|C0||CG|
∑

n′

σ 2
n′ [cos φ A−

n′0((α,β),(α − 1,β))

− sin φ B−
n′0((α,β),(α − 1,β))] , (29)

where the dependence on z has been suppressed for notational
clarity and φ ≡ φG(z) − φ0(z). The summation over n is for
transitions with �m = +1 and that over n′ is for transitions
with �m = −1. For the point q⊥ in the fourth quadrant that is

mirrored across the qx axis (β → −β) we can write
∑

n

|ψ+
n (α, −β)|2 +

∑

n′

|ψ−
n′ (α, −β)|2

= 2|C0||CG|
∑

n

σ 2
n [cos φ A+

n0((α, −β),(α − 1, −β))

+ sin φ B+
n0((α, −β),(α − 1, −β))]

+ 2|C0||CG|
∑

n′

σ 2
n′ [cos φ A−

n′0((α, −β),(α − 1, −β))

− sin φ B−
n′0((α, −β),(α − 1, −β))] . (30)

Inspection of the dot and cross products of the pairs of vectors
occurring in Eqs. (29) and (30), using Fig. 3, reveals that
the cross products are of opposite sign, and so if we subtract
Eq. (30) from Eq. (29) we are left with

∑

n

|ψ+
n (α,β)|2 +

∑

n′

|ψ−
n′ (α,β)|2

−
∑

n

|ψ+
n (α, −β)|2 −

∑

n′

|ψ−
n′ (α, −β)|2

= 4|C0||CG| sin φ
∑

n

σ 2
n B+

n0((α,β),(α − 1,β))

− 4|C0||CG| sin φ
∑

n′

σ 2
n′B

−
n′0((α,β),(α − 1,β)) . (31)

If we had carried along the “diagonal” terms in Eq. (27) in
the derivation, they would cancel at this point. Clearly, if the
transitions �m = ±1 are of equal strength, then

∑

n σ 2
n B+

n0 =
∑

n′ σ
2
n′B

−
n′0 and there is no difference signal. However, as we

have seen in the previous section, for atoms with a magnetic
moment this is not the case, and the terms on the right-hand
side of Eq. (31) do not cancel. It is clear that this difference
signal will be a maximum when φ = φG − φ0 = (N + 1

2
)π , N

an integer. We also note that since the total signal is obtained
by integrating Eq. (31) over all the thickness values z implicit
in that equation, the overall thickness of the specimen plays
a role in maximizing the EMCD signal [13,15,33,36,37]. The
results for the two-beam case hold for any pair of points (α,β)
and (α, −β) and not just the points (1/2,1/2) and (1/2, −1/2)
on the Thales circle (the ideal case).

B. Three-beam systematic row case

Now let us consider the three-beam systematic row of re-
flections −G, 0, and G, also attainable to a reasonable approx-
imation experimentally by judicious tilting of the specimen.
Figure 4 shows an experimental diffraction pattern for 300-keV
incident electrons for the relevant beams in a (400) systematic
row obtained by tilting the sample 9◦ away from the [001]
zone axis towards [010] in NiFe2O4, which is centrosymmetric.
The red circles in Fig. 4 indicate detector apertures placed
symmetrically in quadrants 1–4 in the diffraction plane, to be
referred to later.

From Eq. (26), the contribution to the intensity measured at
the point q⊥ in the diffraction plane from one of the possible
transitions is given by

|ψn(q⊥)|2 = σ 2
n [|C−G|2|Hn0(q⊥ + G)|2

+ |C0|2|Hn0(q⊥)|2 + |CG|2|Hn0(q⊥ − G)|2]
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FIG. 4. Experimental electron-diffraction pattern of NiFe2O4

recorded with 300-keV electrons for a three-beam condition showing

a (400) systematic row for a sample of thickness 290 Å. The red,

dashed circles indicate the positions of detector apertures placed in

quadrants 1–4 in the diffraction plane to record EELS data.

+ 2σ 2
n ℜ{|C0||C−G| exp[i(φ−G − φ0)]

× H ∗
n0(q⊥)Hn0(q⊥ + G)} (≡ Term 1)

+ 2σ 2
n ℜ{|C−G||CG| exp[i(φG − φ−G)]

× H ∗
n0(q⊥ + G)Hn0(q⊥ − G)} (≡ Term 2)

+ 2σ 2
n ℜ{|C0||CG| exp[i(φG − φ0)]

× H ∗
n0(q⊥)Hn0(q⊥ − G)} (≡ Term 3) . (32)

As before, let us consider a point q⊥ in the first quadrant of
the diffraction plane and express this in units of the magnitude
of G using the shorthand notation q⊥ ≡ (α,β). Assume G

is on the positive qx axis. Then we can draw up Table I for
the arguments that occur in the Hn0’s in each of the terms in
Eq. (32) (reading from left to right) and the direction of the cor-
responding vector cross products in Eq. (28). Vectors used to
determine this for quadrants 1 and 4 in the diffraction plane are
shown in Fig. 5. We note that in a given quadrant, for a common
phase φ in Eq. (28), there are two terms with a cross product in
one direction and one in the opposite sense. An analysis similar
to that in Eqs. (27)–(31) for the two-beam case can also be
carried out for the three-beam case, but the basic symmetries
in the diffraction plane can be deduced from Table I.

To further the discussion, let us now assume that the crystal
is centrosymmetric and that we are in the symmetric three-
beam orientation. In that case, two nontrivial Bloch states
are most strongly excited [38], each with Ci

G = Ci
−G, and it

follows from Eq. (22) that CG(z) = C−G(z). As a more specific
example, let us consider the point q⊥ = (1/2,1/2) in the first
quadrant and the points conjugate to it. Then we can draw up
Table II, showing explicitly the arguments that occur in Hn0 in
each of the terms in Eq. (32) and also their relative contributions
to the signal. In assessing the relative contributions of Terms
1 and 3, account needs to be taken of the magnitude of q ′2 and
q ′′2 in the denominator of the B±

n0(q′
⊥,q′′

⊥) term in Eq. (28).
Term 2 in Eq. (32) does not contribute since φG − φ−G is zero
for a centrosymmetric crystal.

It is clear from Table I, and the specific example in Table II,
that the same signal is obtained for a detector at point (α,β)
in the first quadrant and at point (−α, −β) in the third
quadrant. Similarly, a detector at point (−α,β) in the second
quadrant and (α, −β) in the fourth quadrant will yield the same
measurement. In contrast, comparing the signal at (α,β) to that
at (α, −β) yields a nonzero EMCD difference signal. There are
three other such comparisons that can be made in directions
along or perpendicular to the systematic row [39–41].

The experimental results in Fig. 6(a) confirm all these basic
symmetries. These results were obtained from a ferrimagnetic
NiFe2O4 single crystal [42] of uniform thickness using an
FEI Titan 80-300 transmission electron microscope operated
in parallel-beam mode at 300-kV accelerating voltage. The
objective lens exerted a magnetic field B of almost 2 T on
the specimen in the direction antiparallel to the wave vector
of the incident beam k0, thus saturating the magnetization M,
as indicated in Fig. 6(b). The EELS data, for the Ni L edge,
was recorded using a postcolumn Gatan Tridiem system with
a 4 mrad collection angle (with detector aperture positions as
indicated in Fig. 4). Before forming the difference spectra,
background subtraction was carried out using the preedge
range from 817 to 847 eV, and normalization was done using
the postedge sector from 880 to 930 eV. The variations of
heights of L3 are due to statistical noise and asymmetry due
to different dynamical diffraction conditions on either side of
the systematic row [43].

In Fig. 6(b) we show a simulation of the difference signals
at the L2 line as a function of the thickness of the specimen.
In the simulation, the same parameters were used as in the
experiment, and channeling of the electron by the atomic
columns both prior to and after the inelastic interactions [26,44]
was taken into account in an absorptive multislice model
[26,45]. The integral involving atomic wave functions implicit
in the factors F±

n0 and F 0
n0 in Eqs. (14) and (15), respectively,

was evaluated using Cowan’s program RCN (version 36.2.5)
for atomic radial wave functions [23]. The Ni2+ ions in this
compound are considered to be magnetized with four unpaired
spins of the six occupied 3d states pointing antiparallel to the
direction of the incident beam. Based on these considerations,

TABLE I. Arguments of the transition potentials in each of the labeled terms in Eq. (32), indicating the direction of the corresponding cross

product in the second term of Eq. (28). Referring to Fig. 5, an ↑ indicates that the cross product is out of the page and a ↓ that it is into the page.

q⊥ Quadrant Term 1 Dir. Term 2 Dir. Term 3 Dir.

(α,β) 1 (α,β) (α + 1,β) ↓ (α + 1,β) (α − 1,β) ↑ (α,β) (α − 1,β) ↑
(−α,β) 2 (−α,β) (−α + 1,β) ↓ (−α + 1,β) (−α − 1,β) ↑ (−α,β) (−α − 1,β) ↑
(−α, −β) 3 (−α, −β) (−α + 1, −β) ↑ (−α + 1, −β) (−α − 1, −β) ↓ (−α, −β) (−α − 1, −β) ↓
(α, −β) 4 (α, −β) (α + 1, −β) ↑ (α + 1, −β) (α − 1, −β) ↓ (α, −β) (α − 1, −β) ↓
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FIG. 5. Three-beam conditions for CTEM showing the various

vectors that are pertinent to generic vector q⊥ = (α,β) in quadrants 1

(solid lines) and 4 (dashed lines) in Table I. The vectors pertinent to

quadrants 2 and 3 are omitted for clarity.

we obtain the signal relative to the incident beam current.
This order-of-magnitude estimate shows that for typical beam
currents and exposure times a noisy signal is to be expected due
to a low number of contributing electrons. Small differences
consistent with the asymmetric diffraction conditions already
alluded to can be seen. The maximum EMCD difference
signal occurs for a thickness of 240 Å, a thickness which is

slightly smaller than the 290 Å estimated experimentally by
the log-ratio method [2]. The diffraction pattern formed by the
inelastically scattered electrons and from which the difference

signals are formed for the thickness of 240 Å is shown in
the inset. Detector apertures of 4 mrad semicollection angle
are marked and labeled in the inset. We also note that the
thickness at which |CG|/|C0| [cf. Eq. (22)] is a maximum

and thus predicts optimum three-beam conditions is 210 Å,
slightly lower than the thickness where the difference signal is
predicted to be a maximum.

V. ELECTRON MAGNETIC CIRCULAR DICHROISM IN

SCANNING TRANSMISSION ELECTRON MICROSCOPY

We now discuss EMCD in the context of scanning transmis-
sion electron microscopy. In STEM the probe wave function
is usually written in the form

ψ0(q⊥) = A(q⊥) exp[−iχ (q⊥)] exp(−2πiq⊥ · R) , (33)

where A(q⊥) is the aperture function, χ (q⊥) describes the
coherent aberrations of the probe, and the position of the probe
R is taken into account by the final phase term. Then Eq. (19)

becomes

|ψn(q⊥,z)|2 = σ 2
n

∫∫

H ∗
n0(q′

⊥)Hn0(q′′
⊥)

× exp[2πi(q′
⊥ − q′′

⊥) · R]

× A(q⊥ − q′
⊥)A(q⊥ − q′′

⊥)

× exp[iχ (q⊥ − q′
⊥)]

× exp[−iχ (q⊥ − q′′
⊥)]dq′

⊥dq′′
⊥ , (34)

assuming the probe wave function does not depend on z.
For transitions �m = ±1 this can be written in the form

|ψ±
n (q⊥,z)|2 = σ 2

n

∫∫

(cos φ A±
n0 ± sin φ B±

n0)

× A(q⊥ − q′
⊥)A(q⊥ − q′′

⊥)dq′
⊥dq′′

⊥ , (35)

where

φ = 2π (q′
⊥ − q′′

⊥) · R + χ (q⊥ − q′
⊥) − χ (q⊥ − q′′

⊥) . (36)

In the case of CTEM the phases φ in Eq. (28) varied as
a function of z. We note, in particular, that here φ is also
a function of q⊥, probe position R, and, as exploited in
Ref. [10], the aberrations in the probe. However, A±

n0 and
B±

n0 have the same meaning as in Eqs. (20) or (28). In what
follows we initially assume a thin specimen, consistent with
our assumption that the STEM probe does not depend on z.

First, we consider the signal when we scan a STEM probe
across a single magnetized atom. In Fig. 7 we show the
simulated signal in the diffraction plane, using a 200-keV
aberration-free probe with a probe-forming aperture of 25
mrad, from dipole-allowed spin-down to spin-down transitions
for �m = 0, ±1 and for different probe positions as indicated
in the insets in the rightmost panels of Figs. 7(a) and 7(b). There
is an asymmetry in the diffraction signal when the probe is off
the exact atomic position. The orientation of the asymmetry
is perpendicular to the axis joining the probe and the atom.
From these observations we conclude that, in general, there are
two possibilities to extract an EMCD difference signal using a
spectrometer placed off axis. We can use two different probe
positions symmetrically placed with respect to the atom for one
off-axis detector position. Alternatively, we can use one probe
position and two symmetrically placed off-axis detectors.
These possibilities are illustrated by the detector positions
indicated in Figs. 7(a) and 7(b). The result in 7(c) shows the
signal obtained with two off-axis detectors as indicated in 7(b)
while scanning along the horizontal axis across the atom. This
also shows that the signal strength depends on the distance of

TABLE II. Arguments of the transition potentials in each of the labeled terms in Eq. (32), indicating the direction of the corresponding

cross product in Eq. (28) for the specific case (α,β) = ( 1
2
, 1

2
). Also shown is the fractional contribution of each term to the signal. Referring to

Fig. 5, an ↑ indicates that the cross product is out of the page and a ↓ that it is into the page.

q⊥ Quadrant Term 1 Dir./Cont. Term 2 Dir./Cont. Term 3 Dir./Cont.

( 1
2
, 1

2
) 1 ( 1

2
, 1

2
) ( 3

2
, 1

2
) ↓ 0.3 ( 3

2
, 1

2
) (− 1

2
, 1

2
) ↑ 0 ( 1

2
, 1

2
) (− 1

2
, 1

2
) ↑ 0.7

(− 1
2
, 1

2
) 2 (− 1

2
, 1

2
) ( 1

2
, 1

2
) ↓ 0.7 ( 1

2
, 1

2
) (− 3

2
, 1

2
) ↑ 0 (− 1

2
, 1

2
) (− 3

2
, 1

2
) ↑ 0.3

(− 1
2
, − 1

2
) 3 (− 1

2
, − 1

2
) ( 1

2
, − 1

2
) ↑ 0.7 ( 1

2
, − 1

2
) (− 3

2
, − 1

2
) ↓ 0 (− 1

2
, − 1

2
) (− 3

2
, − 1

2
) ↓ 0.3

( 1
2
, − 1

2
) 4 ( 1

2
, − 1

2
) ( 3

2
, − 1

2
) ↑ 0.3 ( 3

2
, − 1

2
) (− 1

2
, − 1

2
) ↓ 0 ( 1

2
, − 1

2
) (− 1

2
, − 1

2
) ↓ 0.7
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FIG. 6. (a) EELS and difference EMCD spectra for the Ni L2,3

edge in NiFe2O4 under three-beam (400) systematic row conditions

and for the four different detector aperture positions, as indicated in

Fig. 4. The four different EMCD signals are obtained by subtracting

the spectrum obtained with the detector in the second quadrant from

that obtained with the detector in the first quadrant, i.e., spectrum 1

– spectrum 2 (denoted 1-2), and the subtractions 1-4, 3-2, and 3-4.

The diagonal differences are obtained from the subtractions 1-3 and

2-4. (b) Simulation of the intensity of the spectra and the difference

signals at theL2 line as a function of the thickness of the specimen. The

difference signal is given relative to the intensity of the incident beam

I0. In such fractional intensities all equal contributions to the signals

before taking the difference (background, nonmagnetic contribution,

etc.) cancel in the difference for a given thickness. The diffraction

pattern formed by the inelastically scattered electrons and from which

the difference signals are obtained for a thickness of 240 Å is shown

in the inset. The relative orientations of the external magnetic field B,

the magnetization M of the Ni2+ ions, and the incident-beam wave

vector k0 are shown by the arrows inset in (b).

the probe from the atom, in particular, it is localized close to
the atomic position.

In Fig. 8 we show simulated STEM EELS images using a
200-keV aberration-free probe, probe-forming semiangle 25
mrad, and for energy-loss electrons of 721 eV (the Fe L2 line)
using a detector aperture of 25 mrad, and assuming fully spin-
up polarized atoms. The scan is over the supercell indicated in
Fig. 8(a) for bcc 〈001〉 Fe with the unit cell indicated by the
dashed lines. Images obtained with an off-axis detector with the
entrance aperture centered at (qx,qy)/k0 = (0, +25) mrad are
shown in Fig. 8(b) and for the aperture centered at (qx ,qy)/k0 =
(0, −25) mrad in Fig. 8(c). Subtracting the image in Fig. 8(c)
from that in Fig. 8(b) yields the EMCD difference map in

FIG. 7. Simulations of the electron-diffraction signal at 721-eV

energy loss for a single spin-up polarized Fe atom illuminated by

a 200-keV aberration corrected STEM probe, considering dipole-

allowed transitions. (a) Diffraction patterns with left-to-right asym-

metry are obtained when placing the probe above and below the

atom, as indicated in the inset on the rightmost panel. (b) Placing the

probe left or right of the atom yields a top-to-bottom asymmetry. (c)

Horizontal scan of the integrated signals, relative to the incident beam

intensity I0, into the off-axis detectors indicated in (b) by a dash-dotted

circle (upper detector) and a dashed circle (lower detector) with

maxima at positions 0.25 Å right and left of the atom, respectively.

By taking the difference of these signals, an EMCD signal (solid

curve) is obtained, which varies as a function of the probe position.

The detectors have a semiangle of 25 mrad, the same as that of

the probe-forming aperture. The relative orientations of the external

magnetic field B, the magnetization M of the Fe atoms, and the average

probe wave vector k0 are shown in part (c) of the figure.

Fig. 8(d) with localized maxima to the left and minima to the
right of the atomic positions.

Another possible way to detect EMCD is to use beam
shaping, as done in Ref. [10], with the aim of maximizing
the EMCD signal. For example, we can construct probes with
vortices of opposite chirality. A scan using a vortex probe
[21,22] of the form exp(iφ) with topological charge +1 is
shown in Fig. 8(e) and that with charge −1 in Fig. 8(f)
with the detector aperture symmetrically placed on the optical
axis. Subtracting the image in Fig. 8(f) from that in Fig. 8(e)
results in the EMCD difference signal in Fig. 8(g) that has
minima localized at the atomic positions. All plots are on the
same relative intensity scale, as indicated by the scale bars.
Consistent with the consideration of the localization of the
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FIG. 8. Simulated 200-kV STEM EELS images using probe and

detector semiangles of 25 mrad for an energy loss of 721 eV, the Fe L2

line, assuming a fully spin-up polarized atom. (a) Supercell used in the

simulations for 〈001〉 Fe, where the bcc unit cell is marked by dashed

lines. Open circles indicate atoms in the upper atomic plane, and filled

black circles show atoms in the lower atomic plane. (b) Scan images

with an off-axis entrance aperture at (qx,qy)/k0 = (0, +25) mrad

and (c) at (qx,qy)/k0 = (0, −25) mrad yield an EMCD difference

image (d) with localized maxima left and minima right of the atomic

positions. Scans with vortex probes of topological charge +1 (e)

and −1 (f) result in a difference signal (g) with minima localized

at the atomic positions. The scans are over the supercell shown in

(a). The relative orientations of the external magnetic field B, the

magnetization M of the Fe atoms, and the average probe wave vector

k0 are shown in the upper center part of the figure. The common

intensity scales used, defined relative to the intensity of the incident

beam I0, are shown on the upper right part of the figure, and a spatial

scale bar is shown in (g).

transition potentials in Sec. II, Figs. 8(d) and 8(g) clearly show
atomically resolved contrast. The width of the signal response
from a single atom is likely to be narrower than the interatomic
spacing in most materials, thus allowing atomic resolution
EMCD.

Thus far we have assumed a thin specimen. However, in
thicker samples channeling of the electrons by the atomic
columns has an important influence on the measured EMCD
signal [13]. In Fig. 9 we show the accumulated difference signal
at an energy loss of 721 eV (Fe L2 line) for 200-keV electrons
incident on bcc 〈001〉 Fe for two differently configured probes.
The atoms are assumed to be fully spin-up polarized with
the magnetization antiparallel to the direction of the incoming
beam, and the contribution from allowed L2 transitions with
�m = +1 is larger than from those with �m = −1. We take
into account the channeling of the electron both before and
after the inelastic scattering events and also absorption from
the elastic channel due to thermal diffuse scattering.

FIG. 9. Accumulated difference signal, relative to the intensity

of the incident beam I0, for bcc 〈001〉 Fe probed with with 200-keV

electrons at an energy loss of 721 eV (Fe L2 line) assuming fully spin-

up polarized atoms. The standard STEM probe (denoted std. probe)

is positioned 0.25 Å to the left of the atom, an off-axis EELS detector

with acceptance semiangle 75 mrad is assumed, and sample tilts of 0◦

and 1◦ perpendicular to the probe displacement are considered. Vortex

probes having topological charges ±1 are on an atomic column, and

on-axis EELS detectors with collection semiangles of 9 and 75 mrad

are assumed. The relative orientations of the external magnetic field

B, the magnetization M of the Fe atoms, and the average probe wave

vector k0 are shown in part (b) of the figure.

First, we show the accumulated difference signal for an
aberration-free STEM probe formed using a 25-mrad aperture

and placed 0.25 Å to the left of an atom for two off-axis
EELS detectors with acceptance semiangles of 75 mrad with
the centers at (qx,qy)/k0 = (0, ± 75) mrad. The STEM probe
is to the left of the atom, and the difference was taken by
subtracting the signal of the detector in the upper half-plane
from that in the lower half-plane. Exactly down the zone axis
(0◦ tilt) the difference signal is initially negative and then
oscillates in sign while decaying with thickness. However, if
the sample is tilted by 1◦ in the direction perpendicular to
the axis joining the probe position and the atomic column,
then the difference signal remains negative and, in general, the
magnitude increases with thickness. The 1◦ tilt was optimal to
reduce the pretransition channeling in this example. For less tilt
the channeling down columns leads to a cancellation of signal
due to an oscillation of the main probe intensity from the left
to the right side of the column and vice versa. Tilting by more
than 1◦ reduces this channeling but also reduces the signal
due to cancellations with neighboring columns overlapping in
projection. For a tilt of 1◦ and sufficiently thin samples, there
is still sufficient two-dimensional information to move beyond
atomic-plane resolution EMCD (APR-EMCD) [11,13].

Second, we consider the case of vortex probes with topo-
logical charges +1 and −1, also formed with a 25-mrad probe-
forming aperture, and using a single on-axis detector with an
acceptance semiangle of 75 mrad. The probe is on the atomic
column with the detector on the optical axis, and the difference
is taken by subtracting the signal obtained with a vortex with
topological charge −1 from that obtained with topological
charge +1, where the chirality is defined with respect to the
incident beam direction. The accumulated difference signal as
a function of thickness is significantly influenced by channel-
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ing after the electron has induced an inelastic transition [13].

After initially being negative, at around 40 Å the accumulated
difference signal becomes positive. For the vortex probe a
smaller detector aperture is needed to avoid the difference
signal going positive, as in the result shown for a detector
aperture of 9 mrad. Unfortunately, the smaller aperture also
reduces the difference signal. The standard STEM probe tilted
through 1◦ with an off-axis detector appears to provide a more
favorable scenario to detect the EMCD signal, albeit at the cost
of some but not all resolution along the direction of the imposed
specimen tilt. It should be noted that spatial incoherence due to
a finite source size may affect EMCD mapping using a standard
STEM probe and vortex probes in different ways [46].

Although the EMCD signal may have atomic-scale features,
it is important to take into account that the degree of localiza-
tion of the transition potentials can be significant, as discussed
in Sec. II, and also that the signal may well have contributions
from atoms away from where the probe is positioned because
the probe can become distributed over a significant sample
volume [47]. So atomic-scale features do not necessarily imply
direct atomic resolution information. However, APR-EMCD
in STEM, by tilting the specimen away from an exact zone
axis orientation, has been theoretically confirmed in Refs. [11]
and [13]. For exact zone axis orientation of the specimen, the
signal sensitively depends on the probe shape. While in STEM
imaging with electron vortex beams the magnetic signal is well
localized, for astigmatic probes it is the neighboring atomic
columns which contribute the majority of the magnetic signal
[48]. Electrons which have previously been thermally scattered
(phonon excitation) may also provide a significant component
to the signal and from atoms not directly illuminated by the
probe, as discussed for EELS and energy-dispersive x-ray
elemental mapping [49].

VI. CONCLUSION

We have introduced an approach based on transition po-
tentials for inelastic scattering to understand the underlying
physics of electron magnetic circular dichroism from first prin-
ciples. This has facilitated an exploration of the localization
of the magnetic signal, particularly pertinent for atomic-scale
scanning transmission electron microscopy. Furthermore, a
direct link is made using an atomic-based model for the elec-
tronic structure, in particular, the spin polarization governing

the magnetic properties of a material, to the EMCD signal
recorded. The transition potential approach lends itself to easy
incorporation in multislice electron-diffraction simulations, as
has been done here. The multislice approach can efficiently
simulate EMCD for nonperiodic systems, and it is possible
to incorporate the contribution from thermally scattered elec-
trons, for example, using the quantum excitation of phonons
model [50].

Two-beam and three-beam systematic row cases have been
discussed in detail for conventional transmission electron
microscopy, and the symmetries seen in the theory have
been confirmed experimentally. For CTEM we have explicitly
assumed centrosymmetric crystals, and consideration of the
noncentrosymmetric case is warranted. We have discussed
some possible modes of atomic-scale EMCD imaging in
STEM, including the use of vortex probes carrying orbital
angular momentum. The effects of channeling on the EMCD
signal have been addressed.

For STEM, there is much that can still be explored. Sig-
nificant variables are the dependence on accelerating voltage,
probe size and shape, specimen temperature, and the effects
of thermal diffuse scattering due to phonon excitation. Quan-
titative calculations of the EMCD signal, taking into account
channeling, enable one to measure magnetization on an abso-
lute scale and allow estimates of experimental parameters, such
as acquisition times, in planning atomic-resolution EMCD
experiments. Initial and final states, taking into account solid-
state effects, should provide a better foundation for further
quantitative modeling.
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