000856511 001__ 856511
000856511 005__ 20240711092234.0
000856511 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2018.07.030
000856511 0247_ $$2ISSN$$a0267-3762
000856511 0247_ $$2ISSN$$a1878-2892
000856511 0247_ $$2WOS$$aWOS:000444664300031
000856511 037__ $$aFZJ-2018-05898
000856511 082__ $$a660
000856511 1001_ $$0P:(DE-Juel1)166322$$aOliveira Silva, R.$$b0
000856511 245__ $$aCreep Behaviour of Dense and Porous SrTi0.75Fe0.25O3-δ for Oxygen Transport Membranes and Substrates
000856511 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000856511 3367_ $$2DRIVER$$aarticle
000856511 3367_ $$2DataCite$$aOutput Types/Journal article
000856511 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540384624_29959
000856511 3367_ $$2BibTeX$$aARTICLE
000856511 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856511 3367_ $$00$$2EndNote$$aJournal Article
000856511 520__ $$aConsidering the challenging conditions imposed by application of membranes in an asymmetric design, in particular creep resistance of the substrate material is an important parameter for the stability in long-term operation. As promising material, in terms of chemical stability, the perovskite SrTi0.75Fe0.25O3-δ has been identified in previous works. Porous supports with different microstructures have been produced using different manufacturing methods and compared to the material in its fully dense state regarding creep behaviour. The creep deformation of pressed, porous tape-cast and freeze-dried SrTi0.75Fe0.25O3-δ specimens has been investigated in the application relevant temperature range of 850–1000 °C under compressive stresses of 15, 30 and 45 MPa. A global fitting method considering all experimental data was used to derive stress exponent and activation energy of SrTi0.75Fe0.25O3-δ, which are 2.9 ± 0.4 and 402 ± 25 kJ/mol, respectively. Thus, it is suggested that the mechanism controlling creep is mainly related to dislocation climb/glide.
000856511 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856511 588__ $$aDataset connected to CrossRef
000856511 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b1$$eCorresponding author
000856511 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b2
000856511 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b3
000856511 7001_ $$0P:(DE-Juel1)172056$$aKrüger, M.$$b4$$ufzj
000856511 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b5$$ufzj
000856511 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2018.07.030$$gVol. 38, no. 15, p. 5067 - 5073$$n15$$p5067 - 5073$$tJournal of the European Ceramic Society$$v38$$x0955-2219$$y2018
000856511 8564_ $$uhttps://juser.fz-juelich.de/record/856511/files/1-s2.0-S095522191830459X-main.pdf$$yRestricted
000856511 8564_ $$uhttps://juser.fz-juelich.de/record/856511/files/1-s2.0-S095522191830459X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856511 909CO $$ooai:juser.fz-juelich.de:856511$$pVDB
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166322$$aForschungszentrum Jülich$$b0$$kFZJ
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b3$$kFZJ
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172056$$aForschungszentrum Jülich$$b4$$kFZJ
000856511 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000856511 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856511 9141_ $$y2018
000856511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856511 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2017
000856511 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856511 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856511 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856511 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856511 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856511 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856511 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856511 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856511 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000856511 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856511 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000856511 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000856511 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000856511 980__ $$ajournal
000856511 980__ $$aVDB
000856511 980__ $$aI:(DE-Juel1)IEK-1-20101013
000856511 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856511 980__ $$aI:(DE-82)080011_20140620
000856511 980__ $$aUNRESTRICTED
000856511 981__ $$aI:(DE-Juel1)IMD-1-20101013
000856511 981__ $$aI:(DE-Juel1)IMD-2-20101013