001     856511
005     20240711092234.0
024 7 _ |a 10.1016/j.jeurceramsoc.2018.07.030
|2 doi
024 7 _ |a 0267-3762
|2 ISSN
024 7 _ |a 1878-2892
|2 ISSN
024 7 _ |a WOS:000444664300031
|2 WOS
037 _ _ |a FZJ-2018-05898
082 _ _ |a 660
100 1 _ |a Oliveira Silva, R.
|0 P:(DE-Juel1)166322
|b 0
245 _ _ |a Creep Behaviour of Dense and Porous SrTi0.75Fe0.25O3-δ for Oxygen Transport Membranes and Substrates
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540384624_29959
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Considering the challenging conditions imposed by application of membranes in an asymmetric design, in particular creep resistance of the substrate material is an important parameter for the stability in long-term operation. As promising material, in terms of chemical stability, the perovskite SrTi0.75Fe0.25O3-δ has been identified in previous works. Porous supports with different microstructures have been produced using different manufacturing methods and compared to the material in its fully dense state regarding creep behaviour. The creep deformation of pressed, porous tape-cast and freeze-dried SrTi0.75Fe0.25O3-δ specimens has been investigated in the application relevant temperature range of 850–1000 °C under compressive stresses of 15, 30 and 45 MPa. A global fitting method considering all experimental data was used to derive stress exponent and activation energy of SrTi0.75Fe0.25O3-δ, which are 2.9 ± 0.4 and 402 ± 25 kJ/mol, respectively. Thus, it is suggested that the mechanism controlling creep is mainly related to dislocation climb/glide.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 1
|e Corresponding author
700 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 2
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 3
700 1 _ |a Krüger, M.
|0 P:(DE-Juel1)172056
|b 4
|u fzj
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 5
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2018.07.030
|g Vol. 38, no. 15, p. 5067 - 5073
|0 PERI:(DE-600)2013983-4
|n 15
|p 5067 - 5073
|t Journal of the European Ceramic Society
|v 38
|y 2018
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/856511/files/1-s2.0-S095522191830459X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856511/files/1-s2.0-S095522191830459X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:856511
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21