000856514 001__ 856514
000856514 005__ 20210129235307.0
000856514 0247_ $$2doi$$a10.1080/15548627.2018.1462079
000856514 0247_ $$2Handle$$a2128/20142
000856514 0247_ $$2pmid$$apmid:29929426
000856514 0247_ $$2WOS$$aWOS:000441624100020
000856514 0247_ $$2altmetric$$aaltmetric:44046526
000856514 037__ $$aFZJ-2018-05901
000856514 041__ $$aEnglish
000856514 082__ $$a570
000856514 1001_ $$0P:(DE-HGF)0$$aZaffagnini, G.$$b0
000856514 245__ $$aPhasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy
000856514 260__ $$aAbingdon, Oxon$$bTaylor & Francis$$c2018
000856514 3367_ $$2DRIVER$$aarticle
000856514 3367_ $$2DataCite$$aOutput Types/Journal article
000856514 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542869287_17915
000856514 3367_ $$2BibTeX$$aARTICLE
000856514 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856514 3367_ $$00$$2EndNote$$aJournal Article
000856514 520__ $$aThe degradation of misfolded, ubiquitinated proteins is essential for cellular homeostasis. These proteins are primarily degraded by the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy serves as a backup mechanism when the UPS is overloaded. How autophagy and the UPS are coordinated is not fully understood. During the autophagy of misfolded, ubiquitinated proteins, referred to as aggrephagy, substrate proteins are clustered into larger structures in a SQSTM1/p62-dependent manner before they are sequestered by phagophores, the precursors to autophagosomes. We have recently shown that SQSTM1/p62 and ubiquitinated proteins spontaneously phase separate into micrometer-sized clusters in vitro. This enabled us to characterize the properties of the ubiquitin-positive substrates that are necessary for the SQSTM1/p62-mediated cluster formation. Our results suggest that aggrephagy is triggered by the accumulation of substrates with multiple ubiquitin chains and that the process can be inhibited by active proteasomes.
000856514 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000856514 7001_ $$0P:(DE-HGF)0$$aSavova, A.$$b1
000856514 7001_ $$0P:(DE-HGF)0$$aDanieli, A.$$b2
000856514 7001_ $$0P:(DE-HGF)0$$aRomanov, J.$$b3
000856514 7001_ $$0P:(DE-HGF)0$$aTremel, S.$$b4
000856514 7001_ $$0P:(DE-HGF)0$$aEbner, M.$$b5
000856514 7001_ $$0P:(DE-HGF)0$$aPeterbauer, T.$$b6
000856514 7001_ $$0P:(DE-HGF)0$$aSztacho, M.$$b7
000856514 7001_ $$0P:(DE-HGF)0$$aTrapannone, R.$$b8
000856514 7001_ $$0P:(DE-HGF)0$$aTarafder, A. K.$$b9
000856514 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b10
000856514 7001_ $$0P:(DE-HGF)0$$aMartens, S.$$b11$$eCorresponding author
000856514 773__ $$0PERI:(DE-600)2262043-6$$a10.1080/15548627.2018.1462079$$n7$$p1280-1282$$tAutophagy$$v14$$x1554-8627$$y2018
000856514 8564_ $$uhttps://juser.fz-juelich.de/record/856514/files/Phasing%20out%20the%20bad%20How%20SQSTM1%20p62%20sequesters%20ubiquitinated%20proteins%20for%20degradation%20by%20autophagy.pdf$$yOpenAccess
000856514 8564_ $$uhttps://juser.fz-juelich.de/record/856514/files/Phasing%20out%20the%20bad%20How%20SQSTM1%20p62%20sequesters%20ubiquitinated%20proteins%20for%20degradation%20by%20autophagy.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856514 909CO $$ooai:juser.fz-juelich.de:856514$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856514 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b10$$kFZJ
000856514 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000856514 9141_ $$y2018
000856514 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856514 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856514 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856514 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAUTOPHAGY : 2017
000856514 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAUTOPHAGY : 2017
000856514 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856514 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856514 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856514 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856514 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856514 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856514 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856514 920__ $$lno
000856514 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000856514 980__ $$ajournal
000856514 980__ $$aVDB
000856514 980__ $$aUNRESTRICTED
000856514 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000856514 9801_ $$aFullTexts