001     856514
005     20210129235307.0
024 7 _ |a 10.1080/15548627.2018.1462079
|2 doi
024 7 _ |a 2128/20142
|2 Handle
024 7 _ |a pmid:29929426
|2 pmid
024 7 _ |a WOS:000441624100020
|2 WOS
024 7 _ |a altmetric:44046526
|2 altmetric
037 _ _ |a FZJ-2018-05901
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zaffagnini, G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy
260 _ _ |a Abingdon, Oxon
|c 2018
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542869287_17915
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The degradation of misfolded, ubiquitinated proteins is essential for cellular homeostasis. These proteins are primarily degraded by the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy serves as a backup mechanism when the UPS is overloaded. How autophagy and the UPS are coordinated is not fully understood. During the autophagy of misfolded, ubiquitinated proteins, referred to as aggrephagy, substrate proteins are clustered into larger structures in a SQSTM1/p62-dependent manner before they are sequestered by phagophores, the precursors to autophagosomes. We have recently shown that SQSTM1/p62 and ubiquitinated proteins spontaneously phase separate into micrometer-sized clusters in vitro. This enabled us to characterize the properties of the ubiquitin-positive substrates that are necessary for the SQSTM1/p62-mediated cluster formation. Our results suggest that aggrephagy is triggered by the accumulation of substrates with multiple ubiquitin chains and that the process can be inhibited by active proteasomes.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Savova, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Danieli, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Romanov, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tremel, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ebner, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Peterbauer, T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sztacho, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Trapannone, R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Tarafder, A. K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 10
700 1 _ |a Martens, S.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1080/15548627.2018.1462079
|0 PERI:(DE-600)2262043-6
|n 7
|p 1280-1282
|t Autophagy
|v 14
|y 2018
|x 1554-8627
856 4 _ |u https://juser.fz-juelich.de/record/856514/files/Phasing%20out%20the%20bad%20How%20SQSTM1%20p62%20sequesters%20ubiquitinated%20proteins%20for%20degradation%20by%20autophagy.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856514/files/Phasing%20out%20the%20bad%20How%20SQSTM1%20p62%20sequesters%20ubiquitinated%20proteins%20for%20degradation%20by%20autophagy.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:856514
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AUTOPHAGY : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AUTOPHAGY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21