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This paper reports the first simultaneous measurement of the horizontal and vertical components
of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The
experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized,
bunched 0.97GeV/c deuteron beam.
Using the new spin feedback system, we set the initial phase difference between the solenoid field

and the precession of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the solenoid was switched on
to rotate the polarization vector. We observed an oscillation of the vertical polarization component
and the phase difference. The oscillations can be described using an analytical model.
The results of this experiment also apply to other rf devices with horizontal magnetic fields, such

as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for
measuring the electric dipole moment (EDM) of charged particles.

Experiments with polarized beams play an important
role in accelerator physics, particularly in the search for

an electric dipole moment (EDM) of charged elementary
particles. For EDM experiments, the precise measure-
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FIG. 1. Coordinate system used to describe the spin motion.
The z-axis is defined by the nominal beam momentum, the
y-axis points upward and the x-axis to the side. α is the angle
between the polarization vector and the horizontal plane. α′

is the angle between the projection of the polarization vector
onto the xy-plane and the x-axis. φspin is the phase of the
spin rotation.

ment and control of the polarization vector is an essential
prerequisite.

In this work, we describe the first simultaneous mea-
surement of the horizontal and vertical components of
the polarization vector in a particle accelerator under
the influence of an rf solenoid. An analytical model is
derived, which is compared to the data. The work is
based on earlier publications; it makes use of the 1000 s
spin coherence time at the Cooler Synchrotron (COSY)
[1], measurements of the fast (120 kHz) precession in the
horizontal plane [2, 3] and a polarization feedback sys-
tem, which is used to select the initial conditions for the
measurements presented here [4].

Solenoid-induced spin resonances have been studied at
COSY before, but the earlier experiments could only
measure the vertical, not the horizontal, component of
the polarization of the deuteron beam. The only possible
initial state was upward or downward polarization. Ad-
ditionally, the analytical model presented here is simpler
than the numerical multiplication of rotation matrices
used in the earlier publication [5].

The presented experiment was performed at COSY
under conditions similar to those described in [4]. A
deuteron beam with a vertical vector polarization was
injected into COSY and accelerated to a momentum of
970 MeV/c. The beam was electron-cooled to reduce the
emittance.

Figure 1 shows the coordinate system used to de-
scribe the polarization vector under the influence of the
solenoid. The polarization vector can be described us-
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FIG. 2. Principle of the experiment. ∆φ can take any value in
the shaded region. α is initially ±π/2. The first solenoid pulse
tilts the polarization into the horizontal plane. The feedback
system is then switched on to set a certain value of ∆φ. After
that, the solenoid is switched on again at a lower amplitude
and the feedback is switched off, leading to oscillations.

ing the precession phase φspin and the angle α between
the polarization vector and the horizontal plane, where
tanα = Py/

√
P 2
x + P 2

z . The magnitude of the polariza-
tion is treated as constant.

Figure 2 shows the basic principle of the experiment.
After 85 s, the polarization was rotated into the horizon-
tal plane using the solenoid, and the feedback system
was switched on. This point is defined as turn number 0.
The feedback system then set the relative phase between
spin precession and the solenoid rf voltage to a predefined
value ∆φ0. 115 s after the start of the cycle, at turn num-
ber 22.9 · 106, the solenoid was switched on again while
the feedback system was switched off, allowing the spins
to precess independently from the solenoid. This is the
important difference from the procedure described in [4],
where the feedback system remained active for the whole
cycle. The experiment was repeated for 16 values of ∆φ0
between −π and π.

It was observed that both the vertical polarization and
the relative phase oscillate with the same frequency in the
order of 0.1 Hz, proportional to the solenoid amplitude.
This behavior can be explained by an analytical model
depending on four parameters, which can be chosen as
the solenoid amplitude, the difference of the solenoid
frequency from the ideal resonance, the initial relative
phase, and the initial angle α between the polarization
vector and the horizontal plane. This analytic descrip-
tion is equivalent to the Single Resonance Model (SRM)
decribed in [6].

The magnetic fields in the storage ring cause a pre-
cession about the y-axis of 2πνs per turn, where νs =
f spin/fCOSY ≈ γG ≈ −0.16 is the spin tune. The
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solenoid rotates the polarization about the z-axis by an
angle k ·sinφsol, where k is proportional to the amplitude
of the solenoid rf signal and φsol is its phase. As long as
φspin is not ±π/2, a rotation about the z-axis also affects
φspin. This way, the solenoid can advance or delay the
precession in the horizontal plane.

From turn number n to n + 1, the change in α, φspin

and the solenoid phase φsol is

φspin
n+1 = φspin

n + 2πνs + k sinφsol
n

dφspin

dα′

∣∣∣∣
Pz=const

αn+1 = αn + k sinφsol
n

dα

dα′

∣∣∣∣
Pz=const

φsol
n+1 = φsol

n + 2πνsol
s ,

(1)

where νsol
s = f sol/fCOSY is the number of oscillations

the solenoid performs per turn, which is equal to νs plus
an integer number when the solenoid is on resonance. It
will become apparent later that distinguishing between νs
and νsol

s is essential to describe the data. The definition
of α′ is indicated in Figure 1.

Eqs. (1) can be simplified by substituting ∆φn =
φspin
n − φsol

n = φspin − 2πnνsol
s and the geometri-

cal derivatives dφspin

dα′

∣∣∣
Pz=const

= − tanα cosφspin and
dα
dα′

∣∣
Pz=const = sinφspin. This results in:

∆φn+1 = ∆φn + 2π(νs − νsol
s )

− k sin(2πnνsol
s ) tanαn cos(∆φn + 2πnνsol

s )

αn+1 = αn + k sin(2πnνsol
s ) sin(∆φn + 2πnνsol

s ).

(2)

The initial phase of the solenoid can be set to zero
without loss of generality. The oscillation has a rapid
component with a frequency proportional to νsfCOSY ≈
120 kHz and a slow component proportional to kfCOSY.
Since we are interested in the polarization evolution over
a longer time scale, we replace the fast component with
its time average, which yields two coupled differential
equations:

dα

dn
=
k

2
cos ∆φ,

d∆φ

dn
=
k

2
(tanα sin ∆φ+ q) .

(3)

The parameter q = 4π(νs − νsol
s )/k indicates how close

the solenoid is to spin resonance. q was typically in the
order of 1, with k ≈ 10−6.

The solution to Eqs. (3) can be written as:

sinα(n) = A1 sin (A2 + nA3)−A4

cos ∆φ(n) =
A1

√
1 + q2 cos (A2 + nA3)√

1− (A1 sin (A2 + nA3)−A4)
2

sin ∆φ(n) =
C + q sinα

cosα
,

(4)
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FIG. 3. Analytical solutions (Eq. (4)) for the on-resonance
case q = 0 and α0 = 0 as a function of nk for different values
of ∆φ0.

with the parameters

A1 =

√
1 + q2 − C2

1 + q2

A2 =


arcsin

(
sinα0 +A4

A1

)
|∆φ0| < π/2

π − arcsin

(
sinα0 +A4

A1

)
|∆φ0| > π/2

A3 =
k

2

√
1 + q2

A4 =
Cq

1 + q2
.

(5)

A1, A4 and q are not independent but coupled via the
following equation:

1 + q2 =
1 +A2

1 −A2
4

2A2
1

±

√(
1 +A2

1 −A2
4

2A2
1

)2

− 1

A2
1

. (6)

The positive sign in (6) corresponds to unbound solu-
tions, the negative sign to bound ones (defined below).
The quantity C = cosα sin ∆φ − q sinα is conserved in
equations (3). The parameters α0 = 0 (which simplifies
A2 in Eq. (5)) and ∆φ0 are the initial values. By setting
∆φ to a certain value at the beginning of a measurement,
it is possible to set the amplitude of the oscillations. The
farther ∆φ0 is from ±π/2, the larger the amplitudes of
the oscillations in α and ∆φ.

Figure 3 shows some solutions for the ideal on-
resonance case (q = 0). For low amplitudes the oscil-
lations approach a sinusoidal shape. As the amplitude
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FIG. 4. Analytical solutions (Eq. (4)) for the off-resonance
case q = 0.5. The other parameters are the same as in Figure
3.

increases, the α curve approaches a triangular function
and the ∆φ curve approaches a step function.

Figure 4 shows solutions for the off-resonance case at
q = 0.5. For every solution, another one can be obtained
by the transformation ∆φ→ ∆φ+π and α→ −α. These
solutions are omitted in the plots for clarity. Solutions
can be divided into two classes: bound solutions, in which
∆φ oscillates around±π/2 without crossing zero, and un-
bound solutions, in which ∆φmoves over the whole range
from −π to π. The latter only occur in the off-resonance
case. Solutions are unbound if and only if |C| < |q|. For
q = 0, the amplitudes of the oscillations in α and ∆φ are
equal (see also [7]).

An off-resonant solenoid frequency has two more ef-
fects. First, α no longer oscillates around 0 but around
± arctan q, where the plus sign applies to cases in which
∆φ oscillates around −π/2 and the minus sign applies
to cases in which ∆φ oscillates around π/2. Secondly,
the frequency of the oscillation increases by a factor of√

1 + q2.
Figs. 5 and 6 show measured values of ∆φ and α along

with fits of Eq. (4) for different starting values ∆φ0. The
settings for the solenoid were kept constant. The fits were
performed using a combined χ2-minimization for the α
and ∆φ data. In Figure 5, ∆φ oscillates around −π/2,
while α oscillates around a value significantly greater
than zero. In Figure 6, ∆φ is not confined to a lim-
ited interval. Runs for all values of ∆φ0 are described
well by the model, confirming its validity.

Another interesting property of the equations of mo-
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FIG. 5. Observation of bound oscillation of ∆φ around
−π/2. The fit results correspond to k = (8.95 ± 0.11) · 10−7,
q = 0.250 ± 0.027 and C = −0.934 ± 0.013 at a χ2/NDF of
101.4/74.
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FIG. 6. Observation of unbound oscillation of ∆φ. The fit
results correspond to k = (8.51± 0.58) · 10−7, q = 0.52± 0.16
and C = 0.205 ± 0.087 at a χ2/NDF of 82.8/74.

tion is that they simplify to a circular motion at a con-
stant speed if α and ∆φ are interpreted as the elevation
and azimuth angles of a spherical coordinate system (see
also [8])

x1 = cosα cos ∆φ

x2 = cosα sin ∆φ

x3 = sinα.

(7)

For an on-resonance solenoid, the circles lie in the xz-
plane. In the off-resonance case, they are tilted by
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FIG. 7. Representation of on-resonance (q = 0, top) and
off-resonance (q = 0.5, bottom) solutions in the coordinate
system defined in Eq. (7)

arctan q.
Figure 7 shows representative solutions of the equa-

tions of motion for the on-resonance and off-resonance
cases. The tilt of the circles in the off-resonance case
is clearly visible. Figure 8 shows the results of the fit
examples under this transformation.

Manipulating the particles using rf devices is impor-
tant for a future measurement of electric dipole moments
using the so-called Wien Filter method [9–11]. A Wien
Filter is a device using electric and magnetic fields that
are orthogonal to each other and to the beam, so that

FIG. 8. Representation of the data and fits from Figs. 5
(black) and 6 (red) in the Cartesian coordinate system defined
in Eq. (7). All points and curves lie on the unit sphere.

the Lorentz force is zero at the design momentum. If
the magnetic field is in the ring plane, a Wien Filter can
cause an oscillation in the vertical polarization, which is
similar to the one observed here, and which follows the
same basic equations [12]. A related model for an rf Wien
Filter is presented in [8].

In conclusion, we have measured the effect of an rf
solenoid on the vector polarization of deuterons in a par-
ticle accelerator, and described it using an analytical
model. The phase between the spin precession and the
solenoid frequency was measured for the first time. The
new polarization feedback system was used to set the ini-
tial conditions. Spin manipulation using rf devices will be
important in later experiments to measure electric dipole
moments in a storage ring using the Wien filter method.
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