000856576 001__ 856576
000856576 005__ 20210117001718.0
000856576 0247_ $$2doi$$a10.1016/j.rse.2018.10.019
000856576 0247_ $$2ISSN$$a0034-4257
000856576 0247_ $$2ISSN$$a1879-0704
000856576 0247_ $$2Handle$$a2128/20322
000856576 0247_ $$2WOS$$aWOS:000450379200018
000856576 0247_ $$2altmetric$$aaltmetric:52404899
000856576 037__ $$aFZJ-2018-05950
000856576 041__ $$aEnglish
000856576 082__ $$a550
000856576 1001_ $$0P:(DE-HGF)0$$aWieneke, S.$$b0$$eCorresponding author
000856576 245__ $$aLinking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales
000856576 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000856576 3367_ $$2DRIVER$$aarticle
000856576 3367_ $$2DataCite$$aOutput Types/Journal article
000856576 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610460813_27206
000856576 3367_ $$2BibTeX$$aARTICLE
000856576 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856576 3367_ $$00$$2EndNote$$aJournal Article
000856576 520__ $$aDue to its close link to the photosynthetic process, sun-induced chlorophyll fluorescence (F) opens new possibilities to study dynamics of photosynthetic light reactions and to quantify CO2 assimilation rates. Although recent studies show that F is linearly related to gross primary production (GPP) on coarse spatial and temporal scales, it is argued that this relationship may be mainly driven by seasonal changes in absorbed photochemical active radiation (APAR) and less by the plant light use efficiency (LUE).In this work a high-resolution spectrometer was used to continuously measure red and far-red fluorescence and different reflectance indices within a sugar beet field during the growing season in 2015. Diurnal and seasonal developments were compared to eddy covariance derived GPP.Additionally, part of the time series coincided with a heatwave. The induced drought stress allowed us to observe F and its relationship to GPP under changing environmental conditions during the seasonal cycle.Across the season a strong linear relationship between GPP and F760 was found. This relationship however, was mainly driven by changes in APAR and was strongly reduced under drought conditions. We could show that far-red fluorescence yield can explain 59% of the diurnal and 79% of the seasonal variance in the light use efficiency. However, an even stronger relationship between FY760 and the structural vegetation index MTVI2 was found, implying that FY760 is affected by seasonal structural changes of the canopy. Nevertheless, the seasonally de-trended FY760 and PRI show that they share strong interdependencies with seasonal and diurnal LUE, in particular under drought stress conditions.
000856576 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000856576 588__ $$aDataset connected to CrossRef
000856576 7001_ $$0P:(DE-Juel1)145906$$aBurkart, A.$$b1
000856576 7001_ $$0P:(DE-HGF)0$$aCendrero-Mateo, M. P.$$b2
000856576 7001_ $$0P:(DE-HGF)0$$aJulitta, T.$$b3
000856576 7001_ $$0P:(DE-HGF)0$$aRossini, M.$$b4
000856576 7001_ $$0P:(DE-Juel1)7338$$aSchickling, A.$$b5
000856576 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b6$$ufzj
000856576 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b7$$eLast author
000856576 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2018.10.019$$gVol. 219, p. 247 - 258$$p247 - 258$$tRemote sensing of environment$$v219$$x0034-4257$$y2018
000856576 8564_ $$uhttps://juser.fz-juelich.de/record/856576/files/1-s2.0-S0034425718304759-main.pdf$$yOpenAccess
000856576 8564_ $$uhttps://juser.fz-juelich.de/record/856576/files/1-s2.0-S0034425718304759-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856576 909CO $$ooai:juser.fz-juelich.de:856576$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich$$b6$$kFZJ
000856576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b7$$kFZJ
000856576 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000856576 9141_ $$y2018
000856576 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856576 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856576 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856576 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000856576 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2017
000856576 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2017
000856576 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856576 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856576 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856576 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856576 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856576 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856576 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856576 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000856576 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856576 920__ $$lyes
000856576 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000856576 980__ $$ajournal
000856576 980__ $$aVDB
000856576 980__ $$aI:(DE-Juel1)IBG-2-20101118
000856576 980__ $$aUNRESTRICTED
000856576 9801_ $$aFullTexts