000856602 001__ 856602
000856602 005__ 20220930130159.0
000856602 0247_ $$2doi$$a10.3389/fnana.2018.00075
000856602 0247_ $$2Handle$$a2128/19842
000856602 0247_ $$2pmid$$apmid:30323745
000856602 0247_ $$2WOS$$aWOS:000445758400001
000856602 0247_ $$2altmetric$$aaltmetric:49541463
000856602 037__ $$aFZJ-2018-05974
000856602 082__ $$a610
000856602 1001_ $$0P:(DE-Juel1)164129$$aSchmitz, Daniel$$b0$$eCorresponding author$$ufzj
000856602 245__ $$aDerivation of Fiber Orientations From Oblique Views Through Human Brain Sections in 3D-Polarized Light Imaging
000856602 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000856602 3367_ $$2DRIVER$$aarticle
000856602 3367_ $$2DataCite$$aOutput Types/Journal article
000856602 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563786876_20751
000856602 3367_ $$2BibTeX$$aARTICLE
000856602 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856602 3367_ $$00$$2EndNote$$aJournal Article
000856602 520__ $$a3D-Polarized Light Imaging (3D-PLI) enables high-resolution three-dimensional mapping of the nerve fiber architecture in unstained histological brain sections based on the intrinsic birefringence of myelinated nerve fibers. The interpretation of the measured birefringent signals comes with conjointly measured information about the local fiber birefringence strength and the fiber orientation. In this study, we present a novel approach to disentangle both parameters from each other based on a weighted least squares routine (ROFL) applied to oblique polarimetric 3D-PLI measurements. This approach was compared to a previously described analytical method on simulated and experimental data obtained from a post mortem human brain. Analysis of the simulations revealed in case of ROFL a distinctly increased level of confidence to determine steep and flat fiber orientations with respect to the brain sectioning plane. Based on analysis of histological sections of a human brain dataset, it was demonstrated that ROFL provides a coherent characterization of cortical, subcortical, and white matter regions in terms of fiber orientation and birefringence strength, within and across sections. Oblique measurements combined with ROFL analysis opens up new ways to determine physical brain tissue properties by means of 3D-PLI microscopy
000856602 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000856602 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000856602 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000856602 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000856602 536__ $$0G:(DE-Juel1)jinm11_20181101$$a3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain (jinm11_20181101)$$cjinm11_20181101$$f3D Reconstruction of Nerve Fibers in the Human, the Monkey, the Rodent, and the Pigeon Brain$$x4
000856602 588__ $$aDataset connected to CrossRef
000856602 7001_ $$0P:(DE-Juel1)171951$$aMünzing, Sascha$$b1$$ufzj
000856602 7001_ $$0P:(DE-Juel1)128854$$aSchober, Martin$$b2$$ufzj
000856602 7001_ $$0P:(DE-Juel1)159224$$aSchubert, Nicole$$b3$$ufzj
000856602 7001_ $$0P:(DE-Juel1)131622$$aMinnerop, Martina$$b4$$ufzj
000856602 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b5$$ufzj
000856602 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b6$$ufzj
000856602 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b7$$ufzj
000856602 773__ $$0PERI:(DE-600)2452969-2$$a10.3389/fnana.2018.00075$$gVol. 12, p. 75$$p75$$tFrontiers in neuroanatomy$$v12$$x1662-5129$$y2018
000856602 8564_ $$uhttps://juser.fz-juelich.de/record/856602/files/2018-0128850-4.pdf
000856602 8564_ $$uhttps://juser.fz-juelich.de/record/856602/files/2018-0128850-4.pdf?subformat=pdfa$$xpdfa
000856602 8564_ $$uhttps://juser.fz-juelich.de/record/856602/files/Schmitz_etal_fnana-12-00075.pdf$$yOpenAccess
000856602 8564_ $$uhttps://juser.fz-juelich.de/record/856602/files/Schmitz_etal_fnana-12-00075.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856602 8767_ $$82018-0128850-4$$92018-08-27$$d2018-10-29$$eAPC$$jDeposit$$lDeposit: Frontiers
000856602 909CO $$ooai:juser.fz-juelich.de:856602$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164129$$aForschungszentrum Jülich$$b0$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171951$$aForschungszentrum Jülich$$b1$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128854$$aForschungszentrum Jülich$$b2$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159224$$aForschungszentrum Jülich$$b3$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131622$$aForschungszentrum Jülich$$b4$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b5$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b6$$kFZJ
000856602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b7$$kFZJ
000856602 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000856602 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000856602 9141_ $$y2018
000856602 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856602 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856602 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856602 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROANAT : 2017
000856602 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856602 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856602 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856602 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856602 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856602 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856602 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000856602 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856602 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856602 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856602 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856602 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000856602 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000856602 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000856602 980__ $$ajournal
000856602 980__ $$aVDB
000856602 980__ $$aI:(DE-Juel1)INM-1-20090406
000856602 980__ $$aI:(DE-Juel1)JSC-20090406
000856602 980__ $$aI:(DE-82)080012_20140620
000856602 980__ $$aAPC
000856602 980__ $$aUNRESTRICTED
000856602 9801_ $$aAPC
000856602 9801_ $$aFullTexts