000856610 001__ 856610
000856610 005__ 20210129235331.0
000856610 037__ $$aFZJ-2018-05978
000856610 041__ $$aEnglish
000856610 1001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b0$$eCorresponding author$$ufzj
000856610 1112_ $$aQuantum Many-Body Methods In Condensed Matter Systems$$cJulich$$d2018-09-24 - 2018-09-27$$wGermany
000856610 245__ $$aQuantum typicality approach: Application to transport in the one-dimensional Hubbard model
000856610 260__ $$c2018
000856610 3367_ $$033$$2EndNote$$aConference Paper
000856610 3367_ $$2DataCite$$aOther
000856610 3367_ $$2BibTeX$$aINPROCEEDINGS
000856610 3367_ $$2DRIVER$$aconferenceObject
000856610 3367_ $$2ORCID$$aLECTURE_SPEECH
000856610 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1540358109_17681$$xInvited
000856610 520__ $$aIn quantum theory, a typical state is a pure random state representing the majority of all possible states, drawn at random from a high-dimensional Hilbert space. The concept of typicality says that such a random state has the same properties as the full statistical ensemble. This concept, together with numerically solving the time-dependent Schrödinger equation (TDSE), is the basis of the so-called quantum typicality approach. It can be used to calculate various properties of quantum systems, such as the density of states (DOS) or certain static and dynamic functions.In this talk, I will start by reviewing the leading methods to solve the TDSE. Following this, I will present the basic concepts contained in the quantum typicality approach. Finally, I will present results of applying the method to transport in the 1D Hubbard model.
000856610 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000856610 909CO $$ooai:juser.fz-juelich.de:856610$$pVDB
000856610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b0$$kFZJ
000856610 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000856610 9141_ $$y2018
000856610 920__ $$lyes
000856610 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000856610 980__ $$aconf
000856610 980__ $$aVDB
000856610 980__ $$aI:(DE-Juel1)JSC-20090406
000856610 980__ $$aUNRESTRICTED