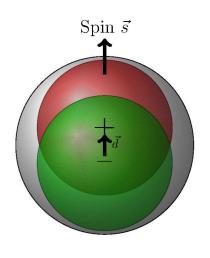
Electric Dipole Moment Measurements at Storage Rings

J. Pretz

RWTH Aachen & FZ Jülich on behhalf of the JEDI collaboration


Trento, ECT*, October 2018
"Discrete symmetries in particle, nuclear and atomic physics and implications for our universe".

Outline

- Motivation for Electric Dipole Moment (EDM) Measurements
- Charged particle EDM measurements achievements, activities, plans

Motivation for Electric Dipole Moment (EDM) Measurements

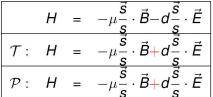
Electric Dipole Moments (EDM)

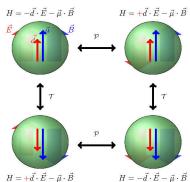
- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal $\mathcal T$ and parity $\mathcal P$ symmetry
- has nothing do due with electric dipole moments observed in some molecules (e.g. water molecule)

2016

PARTICLE PHYSICS BOOKLET

C. Patrignani et al. (Particle Data Group).
Chin. Phys. C. 40, 100001 (2014)
See http://pdg.lbl.gov/ for Particle Listings.
complete reviews and pagive
Available from PDG at Libit. and CERN.

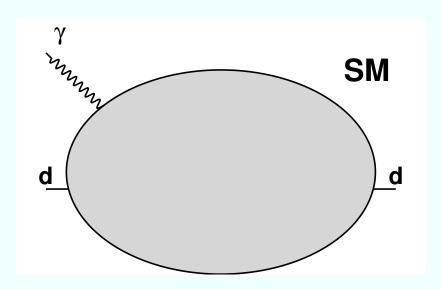

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$


Mass $m = 1.00727646688 \pm 0.000000000009 \mu$ Mass $m = 938.272081 \pm 0.000006$ MeV [a] $|m_p - m_{\overline{p}}|/m_p < 7 \times 10^{-10}$, CL = 90% [b] $\left|\frac{q_{\bar{p}}}{m_{\pi}}\right|/\left(\frac{q_{p}}{m_{\pi}}\right) = 0.99999999991 \pm 0.000000000099$ $|q_p + q_{\overline{p}}|/e < 7 \times 10^{-10}$, CL = 90% [b] $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847351 \pm 0.000000009 \,\mu_N$ $(\mu_0 + \mu_{\overline{0}}) / \mu_0 = (0 + 5) \times 10^{-6}$ Electric dipole moment $d < 0.54 \times 10^{-23}$ ecm Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm [d] Charge radius, ep CODATA value = 0.8751 ± 0.0061 fm [d] Magnetic radius = 0.78 ± 0.04 fm [e] Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% [f] (p \rightarrow invisible mode) Mean life $\tau > 10^{31}$ to 10^{33} years [f] (mode dependent)

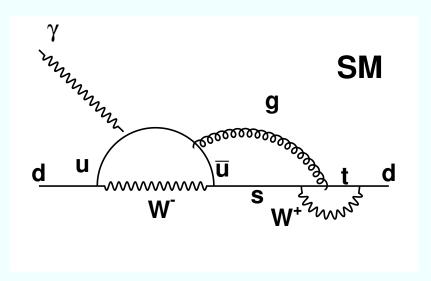
\mathcal{T} and \mathcal{P} violation of EDM

 \vec{d} : EDM

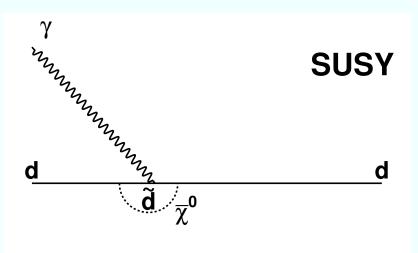
 $\vec{\mu}$: magnetic moment both || to spin



 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=}\mathcal{CP})$


CP−Violation & connection to EDMs

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	ightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	ightarrow accessible by EDM measurements	


EDM in SM and SUSY

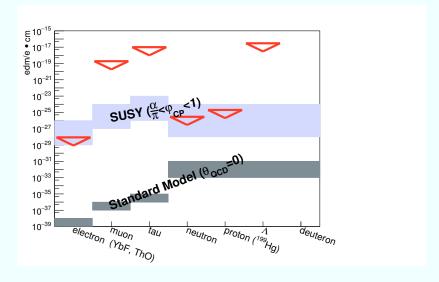
EDM in SM and SUSY

EDM in SM and SUSY

...implications for our universe

Excess of matter in the universe:

	observed	SCM* prediction
$\eta = rac{ extit{n}_{ extit{B}} - extit{n}_{ar{ extit{B}}}}{ extit{n}_{\gamma}}$	6×10^{-10}	10 ⁻¹⁸


Sakharov (1967): CP violation needed for baryogenesis

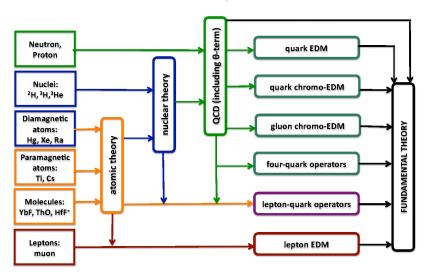
 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could show up in EDMs of elementary particles

* SCM: Standard Cosmological Model

EDM: Current Upper Limits

EDM: Current Upper Limits

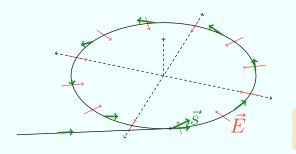

FZ Jülich: EDMs of **charged** hadrons: p, d, ³He

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:
 d_d, d_p, d_n ⇒ access to θ_{QCD}
 (A. Wirzba, J. Bsaisou, A. Nogga, Int.J.Mod.Phys. E26 (2017) no.01n02, 1740031)

EDM of one particle alone not sufficient to identify $\mathcal{CP}-\text{violating}$ source

Sources of CP Violation



J. de Vries

Charged particle EDM measurements achievements, activities, plans

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

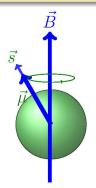
$$rac{\mathrm{d}ec{s}}{\mathrm{d}t}\propto extstyle{d}ec{E} imesec{s}$$

In general:

$$rac{\mathrm{d}ec{oldsymbol{s}}}{\mathrm{d}t} = ec{\Omega} imes ec{oldsymbol{s}}$$

build-up of vertical polarisation $s_{\perp} \propto |{\it d}|$ (can be measured via elastic scattering on carbon)

Spin Precession: Thomas-BMT Equation


$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$\vec{d} = \eta \frac{q}{2m} \vec{s}$$
, $\vec{\mu} = 2(G+1) \frac{q}{2m} \vec{s}$

BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$ec{m{d}} = \eta rac{q}{2m} ec{m{s}} \,, \quad ec{\mu} = 2(G+1) rac{q}{2m} ec{m{s}}$$

BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

(:

- 1.) pure electric ring
- 2.) combined ring
- 3.) pure magnetic ring

no \vec{B} field needed, CW/CCW beams simultaneously works for $p, d, ^3$ He, ...

existing (upgraded) COSY ring can be used, shorter time scale

works only for particles with G>0 (e.g. p) both \vec{E} and \vec{B} required lower sensitivity, precession due to G, i.e. no **frozen spin**

ideal: suppress precession due to magentic dipole moment (frozen spin)

$$\vec{d} = \eta \frac{q}{2m} \vec{s}$$
, $\vec{\mu} = 2(G+1) \frac{q}{2m} \vec{s}$

BMT: Bargmann, Michel, Telegdi

Different Options

 First measurement with existing magnetic ring COSY at FZ Jülich

Jülich Electric Dipole Moment Investigations

Plans for a prototype/dedicated ring:
 CPEDM collaboration (CERN,JEDI,Korea, ...)

Experimental Requirements

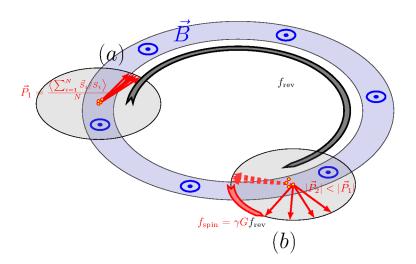
- high precision storage ring → systematics (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- long spin coherence time ($\tau = 1000 \, s$),
- large electric fields (E = 10 MV/m)
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

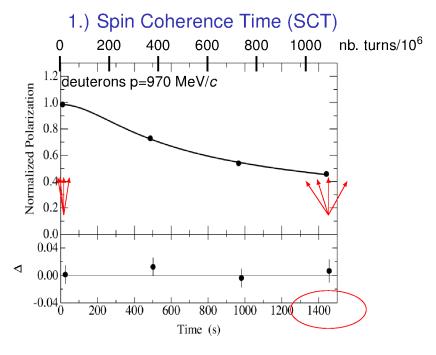
$$\sigma_{ extstyle extstyle extstyle agramme} pprox rac{\hbar}{\sqrt{\textit{Nf}} \tau \textit{PAE}} \quad \Rightarrow \sigma_{ extstyle extstyle agramme} (1 ext{year}) = 10^{-29} \, e \cdot ext{cm}$$

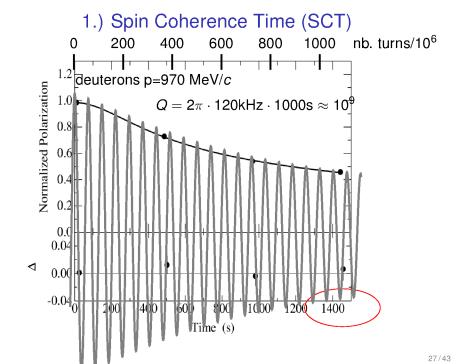
challenge: get σ_{SVS} to the same level

Test Measurements at COSY

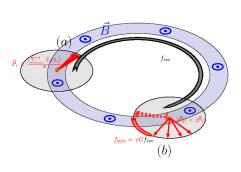
COoler SYnchrotron COSY at Forschungszentrum provides (polarized) protons and deuterons with p=0.3-3.7 GeV/c \Rightarrow Ideal starting point for charged hadron EDM searches

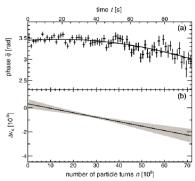

Recent achievements


- **Spin coherence time:** $\tau > 1000 \text{ s}$ (PRL 117, 054801 (2016))
- **Spin tune:** $\overline{\nu_s} = -0.16097 \cdots \pm 10^{-10}$ in 100 s (PRL 115, 094801 (2015))
- Spin feedback: polarisation vector kept within 12 degrees (PRL 119 (2017) no.1, 014801)


(all data shown were taken with deuterons, with $p \approx 1 \text{ GeV/}c$)

- 1 mandatory to reach statistical sensitivity
- ② & ③ shows that we can measure and manipulate polarisation vector with high accuracy


Spin Precession



2.) Spin Tune ν_s

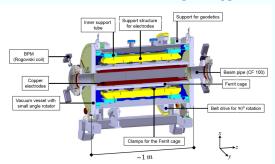


$$\sigma(\nu_{\mathcal{S}} = \gamma G) \approx 10^{-10} \text{ in } 100 \text{ s}$$

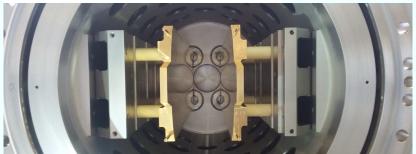
 $\sigma(\nu_{\mathcal{S}} = \gamma G) \approx 10^{-8} \text{ in } 2 \text{ s}$

3.) Polarisation feedback

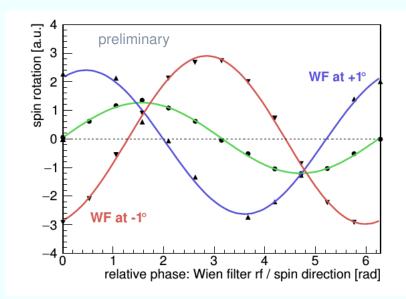
Controlling 120kHz precession

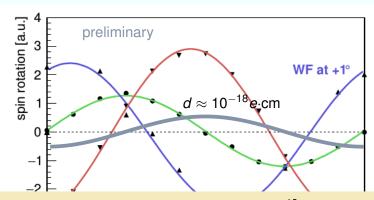


Towards a first deuteron EDM measurement


- Spin Manipulation and Measurement
- In magnetic storage ring EDM just causes oscillation with tiny oscillation in vertical plane
- Wien-filter operating at spin precession frequency leads to vertical polarisation build-up due to EDM (and unfortunately also due to misalignments of storage ring elements)

⇒ EDM measurement possible at magnetic storage ring


Wien filter


- field: 2.7 ·
 10⁻²Tmm for
 1kW input
 power
- frequency range: 100 kHz-2MHz

Results from Nov. 2017 Beam Time

Results from Nov. 2017 Beam Time

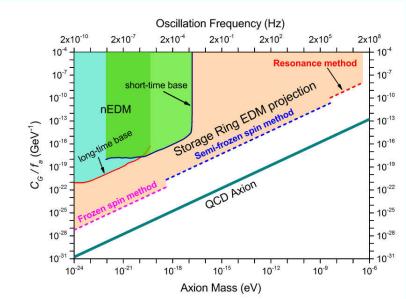
- \approx 1 day of data taking \Rightarrow stat. error \approx 10⁻¹⁹ ecm not a problem
- simulations are ongoing to understand effects of misalignments (here mimicked by rotation of WF)

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation → EDM)
 - theory (pEDM, dEDM, eEDM, $\ldots \rightarrow$ underlying theory)

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation → EDM)
 - $\bullet \ \ \text{theory (pEDM, dEDM, eEDM, } \ldots \rightarrow \text{underlying theory)}$
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of electro static deflectors

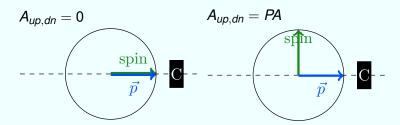

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation → EDM)
 - theory (pEDM, dEDM, eEDM, . . . → underlying theory)
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of electro static deflectors
- other observables:
 - axion searches (axions may lead to oscillating EDM)

Summary

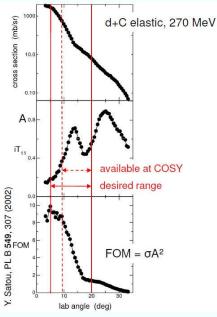
- EDMs are unique probe to search for new CP-violating interactions
- charged particle EDMs can be measured in storage rings
- step wise approach: precursor at COSY → prototype ring (100 m) → dedicated ring (400 m)

Spare

Axion Search



S.P. Chang, PoS PSTP2017 (2018) 036


Asymmetry Measurements

• Detector signal $N^{up,dn} \propto (1 \pm P A \sin(\gamma G \omega_{rev} t))$ $A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = P A \sin(\gamma G \omega_{rev} t)$

A: analyzing power, P: polarization

Polarimetry

Cross Section & Analyzing Power for deuterons

$$N_{up,dn} \propto \ (1 \pm P A \sin(\nu_s \omega_{rev} t))$$

$$egin{aligned} A_{up,dn} &= rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} \ &= P \, A \, \sin(
u_s \omega_{rev} t) \end{aligned}$$

A: analyzing powerP: beam polarization