001     856622
005     20210129235334.0
024 7 _ |a 10.3389/fphys.2018.01490
|2 doi
024 7 _ |a 2128/19849
|2 Handle
024 7 _ |a WOS:000448008900001
|2 WOS
024 7 _ |a altmetric:50388205
|2 altmetric
024 7 _ |a pmid:30405442
|2 pmid
037 _ _ |a FZJ-2018-05989
082 _ _ |a 610
100 1 _ |a Wojciechowski, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Barttin Regulates the Subcellular Localization and Posttranslational Modification of Human Cl-/H+ Antiporter ClC-5
260 _ _ |a Lausanne
|c 2018
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540304418_27419
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dent disease 1 (DD1) is a renal salt-wasting tubulopathy associated with mutations in the Cl-/H+ antiporter ClC-5. The disease typically manifests with proteinuria, hypercalciuria, nephrocalcinosis, and nephrolithiasis but is characterized by large phenotypic variability of no clear origin. Several DD1 cases have been reported lately with additional atypical hypokalemic metabolic alkalosis and hyperaldosteronism, symptoms usually associated with another renal disease termed Bartter syndrome (BS). Expression of the Bartter-like DD1 mutant ClC-5 G261E in HEK293T cells showed that it is retained in the ER and lacks the complex glycosylation typical for ClC-5 WT. Accordingly, the mutant abolished CLC ionic transport. Such phenotype is not unusual and is often observed also in DD1 ClC-5 mutants not associated with Bartter like phenotype. We noticed, therefore, that one type of BS is associated with mutations in the protein barttin that serves as an accessory subunit regulating the function and subcellular localization of ClC-K channels. The overlapping symptomatology of DD1 and BS, together with the homology between the proteins of the CLC family, led us to investigate whether barttin might also regulate ClC-5 transport. In HEK293T cells, we found that barttin cotransfection impairs the complex glycosylation and arrests ClC-5 in the endoplasmic reticulum. As barttin and ClC-5 are both expressed in the thin and thick ascending limbs of the Henle’s loop and the collecting duct, interactions between the two proteins could potentially contribute to the phenotypic variability of DD1. Pathologic barttin mutants differentially regulated trafficking and processing of ClC-5, suggesting that the interaction between the two proteins might be relevant also for the pathophysiology of BS. Our findings show that barttin regulates the subcellular localization not only of kidney ClC-K channels but also of the ClC-5 transporter, and suggest that ClC-5 might potentially play a role not only in kidney proximal tubules but also in tubular kidney segments expressing barttin. In addition, they demonstrate that the spectrum of clinical, genetic and molecular pathophysiology investigation of DD1 should be extended.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kovalchuk, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yu, Lan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tan, Hua
|0 P:(DE-Juel1)164255
|b 3
700 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 4
|u fzj
700 1 _ |a Stölting, Gabriel
|0 P:(DE-Juel1)156347
|b 5
|u fzj
700 1 _ |a Alekov, Alexi K.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.3389/fphys.2018.01490
|g Vol. 9, p. 1490
|0 PERI:(DE-600)2564217-0
|p 1490
|t Frontiers in physiology
|v 9
|y 2018
|x 1664-042X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/856622/files/fphys-09-01490.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/856622/files/fphys-09-01490.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:856622
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)136837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156347
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYSIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21