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Abstract | A defining aspect of brain organization is its spatial heterogeneity, which gives rise 19	

to multiple topographies at different scales. Brain parcellation — defining distinct partitions in 20	

the brain, be they areas or networks that comprise multiple discontinuous but closely interacting 21	

regions — is thus fundamental for understanding brain organization and function. The past 22	

decade has seen an explosion of in vivo, MRI-based approaches to identify and parcellate the 23	

brain based on a wealth of different features, ranging from local properties of brain tissue to 24	

long-range connectivity patterns, in addition to structural and functional markers. Given the 25	

high diversity of these various approaches, assessing the convergence and divergence among 26	

these ensuing maps is a challenge. Inter-individual variability adds to this challenge, but also 27	

provides new opportunities when coupled with cross-species and developmental parcellation 28	

studies. 29	

 30	

Introduction 31	

The organization of the human brain is governed by two fundamental principles: functional 32	

integration into large-scale networks [G], which is realized through long-range connections, 33	

and functional segregation into distinct regions, which is realized through local differentiation1. 34	

Importantly, these two principles are not mutually exclusive, but rather jointly form the 35	

neurobiological basis of all higher brain functions that arise from interactions between 36	
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specialized regions. The spatial arrangement of cortical areas and subcortical nuclei presents a 37	

highly heterogeneous landscape, and ample evidence suggests that this complex topography is 38	

crucial for mental processes2 and inter-individual differences thereof3-5. Accordingly, brain 39	

parcellation — that is, delineation of spatial partitions of the brain — is fundamental for 40	

decoding the human brain.  41	

The study of brain organization is complicated by evidence of multiple axes of organization 42	

according to different neurobiological properties and their measures. For example, 43	

microstructure evidences different hippocampal subregions along the medio–lateral axis6, 44	

whereas patterns of long-range interactions vary along the hippocampal anterior–posterior axis7. 45	

Similarly, the premotor cortex can be distinguished from adjacent prefrontal and primary motor 46	

cortex based on microstructural characteristics8, and can also be subdivided into ventral and 47	

dorsal regions by connectivity and function9. Thus, from both a methodological and a 48	

conceptual standpoint, understanding human brain organization requires a dual perspective, 49	

considering both local properties, as well as connectivity fingerprints [G] 10.  50	

Brain cartography [G] has a long history11 (Box 1), over which different properties of brain 51	

tissues have been progressively integrated towards the now commonly accepted 52	

conceptualization of brain areas12 [G] as entities that show distinct connectivity, 53	

microarchitecture, topography and function13. The concept of brain areas is closely related to the 54	

perspective of a so-called universal map [G] that has driven the brain cartography field for more 55	

than a century14-16. However, the goal of creating a universal map is challenged by the complexity 56	

of brain organization at several levels and across several axes, as well as divergence of patterns 57	

across different neurobiological properties. Furthermore, substantial inter-individual variability 58	

in brain network and areal topography has been documented17-19; but is still poorly understood, 59	

thus challenging the very existence of a universal brain atlas. Hence, the axiom of a ‘universal’ 60	

map that grounds the field of brain cartography remains a matter of conjecture.  61	

Not only can brain parcellations provide fundamental insights into the organizational principles 62	

of the human brain, but they are also of great practical relevance as biologically informed 63	

strategies of data reduction, enabling information from 100,000s of voxels or vertices to be 64	

compressed into manageable sets of nodes reflecting distinct entities. Such reduction is 65	

important for some emerging ‘big data’ approaches that aim to predict behavioural or clinical 66	

phenotypes from brain imaging data20-23. Likewise, the study of brain connectivity with tools 67	

from graph theory [G] requires a limited set of nodes24. Importantly, however, for such 68	
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aggregation to provide a valid compression, the parcels should reflect a biologically meaningful 69	

patterning. This reasoning renders macrostructural characteristics (for example, sulci and gyri; 70	

see macroanatomy atlas examples in Table 1) notoriously unsuited for such task, as they do not 71	

converge with the heterogeneity of functional, structural or connectional markers13,25. Thus, brain 72	

parcellation contributes to a better understanding of brain function and dysfunction not only at 73	

the conceptual level, but also by providing critical priors for connectomics and large-scale 74	

analyses of brain-behaviour relationships. 75	

In spite of the technical and conceptual heterogeneity in the burgeoning field of brain 76	

parcellation, for more than a century its fundamental idea remains to identify components 77	

(either topographically distinct regions or distributed networks) that are internally 78	

homogeneous with respect to a particular neurobiological measure yet that are different from 79	

each other. This goal can be achieved by two conceptually distinct approaches: boundary 80	

mapping and clustering or factorization. In the boundary-mapping approach, a border is 81	

detected by localizing the most abrupt spatial changes in the assessed feature, using a ‘local’ 82	

border-detection (or edge-detection) technique. In clustering and factorization approaches, 83	

spatial elements (voxels or vertices) are grouped on the basis of their similarity and dissimilarity 84	

according to a given marker. Hence, boundary mapping and clustering (or factorization) 85	

approaches could be referred to as local partitioning and global partitioning approaches, 86	

respectively. Note that here we only consider ‘hard partitions’ in which each location is 87	

assigned to one and only one brain’s spatial component, as opposed to ‘soft’ partitions26 (see 88	

Box 2).  89	

Almost any parcellation approach can be applied to almost any neurobiological property (Table 90	

1). Hence, we can further divide brain parcellation approaches according to the type of marker, 91	

by distinguishing markers that describe underlying tissue properties (that is, capitalizing on 92	

local structural or functional properties) from markers that reflect integration into larger 93	

networks (that is, capitalizing on long-range connections). In other words, a further conceptual 94	

distinction can be proposed based on whether the parcellation builds on local architecture or 95	

function (‘local’ properties) or on connectivity fingerprints (‘global’ or ‘connectivity’ 96	

properties). In this Review, we discuss the history of brain parcellation and its current state 97	

along this taxonomy of two independent dimensions — that is, marker approach and 98	

partitioning approach (Fig. 1) — and examine conceptual questions regarding the relationships 99	

among parcellations derived from different markers.  100	
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 101	

Parcellation based on local properties 102	

Early efforts to parcellate the brain on the basis of local properties have mostly been 103	

histological, using, for example, cytoarchitecture [G] and myeloarchitecture [G], 104	

neurochemical markers or (more recently) receptor expression (Box 1). However, these 105	

approaches usually require post-mortem tissue, hence preventing parallel studies of function 106	

and leading to the highly laborious examination of only small samples. By contrast, 107	

neuroimaging techniques such as MRI allow the acquisition of whole-brain images, in vivo, in 108	

large samples of individuals.  109	

 110	

Different types of parcellation based on local properties. The MRI approach that is most 111	

similar to histological methods is the mapping of myelin27. One popular estimate of myelin 112	

content that is used to create myelin density maps is yielded by the T1-weighted-to-T2-113	

weighted ratio28. Myelin markers can be used to disentangle primary areas from associative 114	

areas. For example, V1 and V2 delineated using functional imaging and histological measures 115	

are much more heavily myelinated compared with higher visual cortical areas (Fig. 2)28. 116	

However, MRI-based (and histology-based) myelin mapping for cartography purposes has been 117	

mostly limited to auditory29, visual30 and sensorimotor regions28. Owing to a lack of 118	

distinctiveness in myelination densities across association cortex, the application of myelin 119	

mapping for cartography beyond sensorimotor cortex often requires the incorporation of 120	

additional information, such as cortical thickness or cytoarchitecture28.  121	

Other local markers that can be used for parcellation are functional signals in response to 122	

specific external stimulation or mental tasks. Following the modelling of local responses across 123	

time or across different contexts, distinct areas can be disentangled based on their response 124	

patterns. The most widespread application of such approaches is visuotopic mapping [G] (Fig. 125	

2)31. Importantly, visual areas defined based on fMRI visuotopic mapping correspond well with 126	

the areas defined by cytoarchitecture, supporting the validity of using fMRI signals for brain 127	

parcellation (Fig. 2).  128	

However, beyond visuotopic mapping, parcellation based on local functional signal has been 129	

surprisingly rarely explored. Although parcellation on the basis of local functional responses 130	

presumably represents a powerful approach to understand brain organization in terms of areas 131	

and networks, recording the complete repertoire of functional responses remains a major 132	

challenge. Accordingly, parcellations based on functional response have thus far been limited 133	

to a particular set of tasks or a comparably confined brain region. For example, one study 134	
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parcellated the brain into functional networks by clustering task-evoked responses during 135	

finger-tapping32. Another recent study proposed a parcellation based on response to semantic 136	

content during several hours of story listening by seven individuals33 (Table 1). Nevertheless, 137	

the richness of neither of these recordings probably did not come close to reflecting the entirety 138	

of the brain’s functional repertoire. Together with the small sample sizes used, this point raises 139	

the question of the ‘universality’ of the resulting parcellation.  140	

Directly tackling these limitations, meta-analytic approaches have been used to define 141	

subregions within, for example, the insular cortex34 on the basis of the convergence of activation 142	

during tasks involving different cognitive domains, such as motor tasks, cognitive or affective 143	

processing. This approach was recently automated in a clustering procedure, thus highlighting 144	

the potential to parcellate cortical and subcortical regions by local activation data (Fig. 1)35. 145	

Importantly, the extension of such approaches to other brain regions (such as the hippocampus) 146	

would require an extensive repertoire of functional responses, complicating developments. 147	

Recent progress in the aggregation of activation data36-38 may help overcome these challenges. 148	

Whole-brain maps of local response patterns to various task conditions and stimuli may thus be 149	

computed from large sets of activation data. Such an approach would enable the delineation of 150	

brain areas based on their pattern of activations across many dimensions of behavioural tasks 151	

(depending on task, stimuli, responses, and so on). However, this approach might be biased 152	

towards tasks that can readily be applied in the scanner and by the fact that activations are more 153	

frequently reported in certain brain regions (e.g., insula) compared with others39. Furthermore, 154	

a fundamental limitation of meta-analysis is the spatial blurring that is inherent to combining 155	

participants from studies across different labs and coordinate systems. Therefore, extensive 156	

recordings of activation recording (that is, deep phenotyping) in a small number of participants40 157	

and extensive aggregation of activation studies are highly complementary.  158	

 159	

Future challenges for parcellations based on local properties. Although MRI-based 160	

measurements of brain local properties such as myelination or functional responses are less 161	

time-intensive and labour-intensive than ex vivo microstructural examination, their clear 162	

drawback is that the respective properties are not directly observable but must be inferred from 163	

the measured data, rendering the ensuing brain maps contingent on the model for measuring 164	

these properties. Nevertheless, as illustrated in Fig. 2, the delineation of cortical areas based on 165	

MRI-measured local properties converge with those from histology-based architectonic 166	

approaches, clearly supporting the biological validity of the former41. Furthermore, the ongoing 167	

development of high-field scanners should provide the possibility of MRI-based architectonic 168	
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parcellation41,42. That is, in the future, parcellations could capitalize on imaging properties that 169	

are closer to the microstructure of the brain, such as laminar patterns in the human medial 170	

temporal cortex that were observed through ex vivo MRI43. Such advances could provide an 171	

important bridge to histological investigations in the same specimen44,45,46. Thus, brain 172	

parcellation based on local properties not only has a storied tradition (Box 1; Fig. 1), but also 173	

should see substantial future progress42.  174	

 175	

Parcellation based on connectivity 176	

Local differentiation and network integration are complementary characteristics of brain 177	

organization47, as each brain area is characterized by its regional makeup and its specific 178	

interactions with other regions48. Thus, a connectivity profile distinct from neighboring tissue 179	

has been a longstanding criterion for defining a cortical area. Accordingly, information on 180	

functional interaction and anatomical connectivity, which reflect functional integration, can be 181	

used for mapping the regional segregation of a brain area48.  182	

 183	

We note that ‘connectivity’ is itself a heterogeneous concept, referring to, for example, 184	

functional dependencies (functional connectivity) or to physical connection (structural 185	

connectivity). For the sake of providing an overview on the key lines of research, therefore, we 186	

will focus on the three approaches that have been used most frequently in brain parcellation to 187	

date (Box 3): the estimation of anatomical connectivity by tractography on diffusion-weighted 188	

images49; task-free functional connectivity assessed through resting-state echo planar imaging 189	

[G] time-series correlations50; and co-activations during task performance revealed through 190	

meta-analytic connectivity modelling [G]51,52. All of these approaches allow the inference of 191	

voxel-wise or vertex-wise structural or functional connectivity with other brain locations, which 192	

in turn allows the computation of a connectivity fingerprint15. Brain areas can be delineated 193	

directly from their functional connectivity or from whole brain connectivity fingerprint using 194	

either boundary mapping or clustering approaches. Of note, the parcellation technique can in 195	

theory be applied to any connectivity measure, such as structural covariance, although the latter 196	

has been less commonly used (Box 3). Thus, the most frequent connectivity-based parcellations 197	

are based on structural connectivity inferred from diffusion MRI, resting-state functional 198	

connectivity and task-based functional connectivity.  199	

 200	

Boundary mapping versus clustering. In contrast to histological brain mapping, which has 201	

largely relied on border detection, connectivity-based parcellation (CBP) has mainly used 202	
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clustering approaches to group voxels such that connectivity fingerprints are as similar as 203	

possible within a group of voxels, and as different as possible between groups of voxels. The 204	

resulting clusters represent different brain areas or networks. All methods have their inherent 205	

assumptions, strengths and limitations, and the choice of an algorithm imposes those 206	

assumptions on the resulting parcellation. Accordingly, different algorithms can yield different 207	

parcellations on the same data25,53,54. To date, relatively few studies have applied boundary-208	

mapping techniques to resting-state functional connectivity markers55,56,57-59 (Fig. 1) or clustering 209	

to markers of local properties32,35. There is, however, no technical or conceptual requirement for 210	

the dominant partnering of local properties and border detection on the one hand, and the pairing 211	

of connectivity-markers and clustering approaches on the other. Rather, either type of 212	

neurobiological property may be assessed using either approach; the current predilection seems 213	

historically driven.  214	

Indeed, boundary mapping and clustering can be considered complementary for capturing 215	

different aspects of brain organization, and as such were very recently integrated into a single 216	

hybrid model54. This was done by using an objective function that promoted the assignment of 217	

vertices with similar connectivity profiles to the same region (that is, clustering), but at the same 218	

time encouraged the assignment of spatially adjacent vertices with different profiles to different 219	

regions (that is, boundary mapping). As illustrated in Supplementary Figure S1, the resulting 220	

brain parcellation outperformed either local or global approach in terms of the homogeneity of 221	

the functional signal within the derived regions, and also captured topographic organization in 222	

sensorimotor and visual areas. Thus, combining local border detection with clustering may be 223	

a promising direction for future brain parcellations.  224	

 225	

Examples of connectivity-based parcellations. CBP was first performed on structural 226	

connectivity markers estimated from diffusion MRI. Behrens et al.49 and Johansen-Berg et al.60 227	

computed probabilistic tractography [G] for each seed voxel in the thalamus and medial 228	

frontal cortex, respectively, and then grouped these voxels according to their connectivity 229	

profiles. The resulting thalamic subregions corresponded to nuclei identified by histological 230	

studies, and spatial clusters in the medial frontal cortex matched the supplementary and pre-231	

supplementary motor areas defined by task activation, providing important face validity. In 232	

another study, CBP applied to resting-state functional connectivity markers55 demonstrated the 233	

existence of sharp local transitions in functional connectivity patterns across the cortex. 234	

Following these pioneering studies, CBP based on resting-state functional connectivity markers 235	

or on probabilistic tractography have been widely applied. Resting-state functional connectivity 236	
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has proven particularly popular and accessible for estimating connectivity, and has already been 237	

widely used for parcellation not only at the areal level but also at the network level, and still 238	

represents the focus of technical developments61,62.  239	

 240	

Soon after, CBP based on meta-analytic connectivity modelling63-65 and structural covariance 241	

[G]64,66 data were also introduced. As a proof of concept, meta-analytic connectivity modeling 242	

was first used to delineate the pre-supplementary motor area and the supplementary motor 243	

area65, and both approaches (CBP based on meta-analytic connectivity modeling and CBP based 244	

on structural covariance) were then used to parcellate the insula63,64. Meta-analytic connectivity 245	

modeling has since been extensively used to parcellate cortical regions, as well as subcortical 246	

structures, whereas structural covariance has only been sparingly used. The relatively low use 247	

of the latter approach may relate to its complicated interpretation; it is based on structural data 248	

but used as a proxy of functional interactions. Importantly, CBPs based on different markers 249	

seem to converge towards a similar pattern of brain organization64,67, suggesting that they may 250	

capture robust aspects of brain topography. Nevertheless, we should note that often such 251	

convergence was explicitly searched for or requested as a proof of concept, and some evidence 252	

suggests that at higher granularity, partitions based on different connectivity measures tend to 253	

diverge64,68. Below, we briefly discuss challenges associated with CBP and new technical 254	

developments, before returning to the issue of divergence and convergence between partition 255	

schemes based on different markers.	256	

 257	

Challenges associated with connectivity-based parcellations. Parallel with the increase in the 258	

range of markers, CBP has undergone rapid development and divergence of methods, leading 259	

to a rather heterogeneous literature. In fact, there are hardly any examples of CBP papers using 260	

the same approach. These technical developments and the ensuing challenges are reviewed 261	

elsewhere69, but here we wish to highlight one critical aspect: the issue of selecting the number 262	

of clusters or parcels. First, we note that this may represent an ill-posed problem, as the brain 263	

has a multilevel organization and therefore there may be no ‘right’ number of parcels61,70. Instead, 264	

different granularities may reflect different levels of brain organization. Second, it must be 265	

remembered that clustering algorithms such as k-means [G] can partition any data set into any 266	

number of clusters71. In combination with a lack of biological ground truth, the question of how 267	

many clusters or parcels to select has necessitated the development of evaluation procedures. 268	

Many studies have used ‘internal information’; that is, information within the data. For 269	

example, considering that a ‘good’ clustering should maximize variance between clusters and 270	
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minimize variance within clusters, the ratio of these variances can be used to characterize 271	

cluster separation and to select the ‘optimal’ number of clusters. Such ‘internal information’ 272	

criteria mainly target the quality of the yielded clustering when considered purely from a 273	

technical point of view, that is, within the framework of an unsupervised learning problem. 274	

Although these criteria have been frequently used in CBP studies72-74, a ‘good’ clustering from a 275	

data representation perspective might not necessarily represent a ‘good’ partition with regards 276	

to the neurobiology that the approach aims to reveal — particularly in the presence of, for 277	

example, structured noise or outliers. 278	

 279	

Consequently, there is an increasing interest in evaluation criteria for assessing parcellations 280	

that go beyond characterizing the quality of data representation. For example, assuming that 281	

partitions driven by biological truth should be more stable across different samples, 282	

reproducibility may indicate biological validity. Many studies have hence investigated stability 283	

across re-sampling, and reproducibility across independent samples, to propose optimal 284	

partitions70,75. Along the same lines, some recent studies have capitalized on the richness of 285	

technical variants (that is, the use of different data preprocessing and/or clustering algorithms) 286	

to examine the robustness of the parcellation scheme across different analyses22,31. The 287	

underlying idea here is that a partition scheme that is constant across different techniques is 288	

likely to be driven by the underlying neurobiology rather than methodological effects. 289	

Nevertheless, because such resampling methods do not rule out the influence of consistent 290	

artefacts within the same measurement technique, evidence of convergence across different 291	

markers has also more recently been used for so-called cross-modal validation67,68,70,76. Thus, in the 292	

absence of apparent ground truth, current parcellation work capitalizes on replication, 293	

robustness and convergence as proxies for biological validity.  294	

 295	

Divergence between properties  296	

The idea that different neurobiological properties should show similar pattern of organization 297	

was already noted in 1925 by von Economo and Koskinas and has remained a fundamental 298	

axiom of brain mapping. As written by Zilles and colleagues77 in 2002, “All these architectonic 299	

and functional imaging studies support the hypothesis of a correlated structural and functional 300	

subdivision of the cortex”. Such convergence across properties is indeed frequently observed 301	

(Fig. 2). Accordingly, especially with the emergence of CBP, convergence with previous brain 302	

maps (particularly from cytoarchitecture) has been used to argue for the validity of newly 303	

developed methods. We stress, however, that no property, be it resting-state connectivity, 304	



	 10	

cytoarchitecture, diffusion tractography or task-based activation patterns, should be considered 305	

conceptually superior than any other modality, as each represents its own specific window into 306	

the topographic organization of the human brain. The prevailing notion that there is a gold-307	

standard parcellation method thus seems misleading. Rather, the critical question is how to 308	

examine and interpret the convergence and divergence across parcellation results. 309	

Although consistency across neurobiological properties certainly instills confidence in the 310	

robustness of a parcellation, we note a confusing development. There seems to have been a 311	

gradual shift from providing arguments that a newly conceived method may identify 312	

meaningful patterns towards the notion that parcellations must necessarily converge if they are 313	

to be considered biologically relevant41,78. This notion is in stark contrast to the fundamental idea 314	

that different properties reflect different aspects of brain organization79. In fact, divergences in 315	

the topographical maps evidenced by different markers can actually be found quite frequently 316	

in the literature, although they are rarely highlighted80. For example, histological features mainly 317	

show an organization of the hippocampus along the medial–lateral axis6, whereas connectivity 318	

markers will primarily reveal an organization along the anterior–posterior axis81,82. Notably, such 319	

differences are largely irrelevant from a data-compression perspective, as the best 320	

representation of the data is specific to the data in hand and the purpose of representation11,83. For 321	

example, a CBP derived from resting-state functional connectivity provides a good 322	

“condensed” representation of voxel-wise data for subsequent analyses of fMRI signal, with 323	

resulting parcels being more homogeneous in terms of resting-state signal than, for example, 324	

cytoarchitectonic areas83.  325	

From a conceptual view, however, such differences between topographical maps that have been 326	

derived using different markers arguably deserve more attention than they have received up to 327	

now. The fact that each neurobiological property represents a unique window into brain 328	

organization suggests that several different, equally valid, maps can be derived from the 329	

analysis of different markers, such as cytoarchitecture, connectivity or function. Furthermore, 330	

this conceptualization implies that parcellation based on any given characteristic (such as 331	

cytoarchitecture) cannot be used as a completely faithful surrogate for parcellation based on 332	

another characteristic (such as anatomical connectivity)44,84, although it can be expected to have 333	

some predictive value (see below).  334	

Nevertheless, inferences on brain organization that are based on any one specific marker in 335	

isolation might also be difficult, because all methods are susceptible to artefacts. In particular, 336	

MRI-based markers indirectly represent biological features (Box 3), whereas analyses of 337	
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histological sections are susceptible to geometric distortions resulting from tangential 338	

sectioning. Hence, one approach for increasing the likelihood that a parcellation represents a 339	

biological property of the brain is to retain only patterns that are consistent across parcellations 340	

based on different markers and methods, even though this approach comes at the cost of 341	

potentially missing important aspects of brain organization not revealed by all markers and 342	

methods.  343	

 344	

Multimodal approaches 345	

Although the idea of integrating different approaches towards a universal whole-brain (or 346	

cortical) map has been around for many years12, the perspective has only been recently 347	

concretized in humans16,85. Although we will refer to these approaches as ‘multimodal’, this term 348	

should not be taken as referring to different MRI modalities, but more generically to studies 349	

investigating different markers for parcellation, be they MRI-based (such as resting-state 350	

functional connectivity) or not (for example, based on a receptor fingerprint).  351	

 352	

First endeavours of multimodal approaches. Several studies have derived ‘multimodal 353	

parcels’ by retaining the spatial overlap between clusters from unimodal parcellations. For 354	

example, resting-state functional connectivity, meta-analytic connectivity modelling and 355	

probabilistic tractography parcellation schemes were superimposed to derive robust parcels in 356	

the superior parietal lobule86, dorsal premotor cortex68 and even in a small subcortical structure, 357	

the nucleus accumbens87. Thus, the ‘cluster conjunction’ approach has provided encouraging 358	

results for brain cartography in terms of representing robust, ‘fundamental’ units 11.  359	

However, such conjunction only allows unequivocal mapping when all unimodal parcellations 360	

reveal a similar pattern whereas the procedure for dealing with substantial discrepancies 361	

between unimodal parcellations remains an open challenge. Most previous studies chose to 362	

exclude ambiguous voxels, but doing this can lead to a fragmented and incomplete map. 363	

Furthermore, we anticipate that, when a convergence between partition schemes based on 364	

different markers can be observed, it will be restricted to subdivisions at certain spatial scales64,68, 365	

thus enforcing the conjunction at a level of partitions that might not be optimal (for example, 366	

less stable) for each unimodal partition when considered in isolation. Thus, there is no guarantee 367	

that this approach could be successfully applied to the whole brain and yield a biologically valid 368	

map. 369	

 370	
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One strategy to avoid such situation lies in multimodal integration before partitioning. Using a 371	

semi-automated border-identification approach, an innovative integration of MRI-derived local 372	

and connectivity measures into a unique parcellation was recently performed16. As fully 373	

automated detection of borders is prone to false positives (because abrupt changes in marker 374	

distribution can be driven by artefacts), a trained (human) observer supervised the procedure 375	

and ultimately accepted or rejected each automatically detected border. This approach has the 376	

advantage of being able to integrate decades of prior knowledge on brain organization, but 377	

conversely comes with the drawback that a priori knowledge and expectations of brain 378	

organization may bias the ensuing parcellation.  379	

 380	

Challenges in integrating properties. An important but underappreciated aspect of multimodal 381	

brain parcellation is the fact that different properties should be expected to provide 382	

complementary information about regional brain organization80. Arguably, therefore, only a 383	

combination of different measures may allow a true understanding of topographic organization 384	

in the human brain. However, three sub-goals may potentially conflict here. First, a multimodal 385	

approach should retain information relating to each property. Second, a multimodal approach 386	

should neutralize artefacts or spurious patterns that occur in only one measure. Third, the 387	

approach should be data-driven, to minimize potential biases from a priori and subjective 388	

expectations. These are potentially contradictory requirements, because a pattern observed in 389	

only one modality could reflect a biological aspect that is uniquely captured by that modality 390	

or an artefact of the technique. In turn, artefacts can be detected by human inspection, but such 391	

intervention is ultimately observer-dependent and may hinder the discovery of new patterns 392	

that are not expected from previous literature. Considering these issues, we discuss two 393	

potential strategies below to maximize the information retained and to minimize manual 394	

intervention.  395	

 396	

Maximizing the number of modalities. One basic axiom is that different modalities reflect the 397	

many dimensions along which the brain is organized. For example, the frontal lobe is organized 398	

along rostro-caudal, ventro-dorsal and medial-lateral axes88. Let’s accordingly consider three 399	

dimensions A, B and C. Suppose a given marker predominantly reflects dimension A, to a lesser 400	

extent, dimension B, and to an even more minor extent, dimension C. By contrast, another 401	

marker might mostly reflect dimension B, to a lesser extent, dimension A, and to even lesser 402	

extent, dimension C. Integrating both modalities would maximize the likelihood of capturing 403	

brain organization along both dimensions A and B. Such integration would also offer greater 404	
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insights into dimension C than either of the modalities considered in isolation. However, the 405	

integration of modalities might still not optimally represent brain organization along dimension 406	

C. An additional modality sensitive to dimension C would be necessary to fully capture this last 407	

dimension.  408	

In other words, we expect that the higher the number of different modalities, the higher the 409	

chance to fully capture each dimension or organizational aspect. This strategy not only would 410	

promote an optimal coverage of the multiple organizational dimensions of the brain but also 411	

would contribute to disentangling true neurobiological aspects from artefacts with minimal 412	

human intervention. We therefore argue that a multimodal approach should maximize the 413	

number, but also diversity, of modalities. This pertains particularly to the integration of 414	

structural, functional and connectional measures across both MRI and also, importantly, 415	

histological measures. To the best of our knowledge, such integration has not yet been achieved. 416	

So far, the few published multimodal studies have focused exclusively on MRI-based 417	

features16,68,86,87,89, and integration of histological with MRI-based features has only been performed 418	

in one specimen85. For example, the integration of histological myelin-maps with MRI-derived 419	

proxies thereof has been unexplored to date, but such integration would provide at least some 420	

protection against method-specific artefacts or biases.  421	

 422	

Towards a multimodal map with predictive value. The integration of different markers poses 423	

technical challenges, and how divergent parcellations should be conceptualized also remains 424	

an open topic. That is, if different properties, such as microstructure and long-range 425	

connectivity, indeed reflect different organizational dimensions, how should a multimodal map 426	

of cortical areas be defined? Although certainly a premature idea at the current stage, we suggest 427	

that an optimal representation of multiple divergent parcellations might be defined by an ‘or’ 428	

combination of unimodal borders. Concretely, wherever the local information-processing 429	

infrastructure or the pattern of interactions changes, a new region should be defined. Such an 430	

approach might potentially contribute to disentangling small regions, called domains [G], that 431	

have been observed in invasive studies in non-human primates and are hypothesized to exist in 432	

humans. The primary example of domains are separable entities in the posterior parietal cortex, 433	

primary motor and premotor cortex that seem to be related to different kinds of movements (for 434	

example, defense of the head) and could support close functions in humans, such as protective 435	

behavior of peripersonal space90,91. An ‘or’ combination across a multimodal map might help to 436	

disclose those small entities but could also include spurious borders owing to modality-specific 437	

artefacts.  438	
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One avenue to empirically evaluate different methods for combining multiple maps is through 439	

supervision on a meta-level, by testing which approach holds the highest predictive value for 440	

brain function and dysfunction. In other words, an optimal multimodal map should provide the 441	

best prediction of task-related activations, behavioural phenotype and/or clinical symptoms. 442	

For example, a map that divides the hippocampus along both the anterior-posterior axis (based 443	

on connectivity) and the medial-lateral axis (based on histology) might better predict clinical 444	

phenotype (in Alzheimer disease or major depressive disorder) with supervised machine 445	

learning, compared with either connectivity-based or histological maps alone.  446	

We note that this view is in line with a long tradition in brain cartography, as even early brain 447	

mapping books sought to relate partitioning to behavioural (dys-) function. For example, 448	

intracranial stimulation in two distinct areas in non-human primates induced different patterns 449	

of interference with animal behaviour92. In humans, invasive cortical stimulation mapping in 450	

surgical patients mirror such functional validation18. The neuropsychological lesion–deficit 451	

approach can also contributes to the distinction of different brain areas, despite several 452	

limitations93. Alternatively, the validity of functional maps can be tested in surgical patients 453	

based on their ability to predict post-surgical deficits. Hence, being more controlled than the 454	

post-hoc lesion approach, investigation in surgical patients can be seen as a ‘gold standard’ for 455	

functional mapping. This deficit-based view should then be complemented by a detailed, again 456	

multi-modal characterization of the physiological properties of the delineated areas, in order to 457	

build a functionally comprehensive atlas upon the spatial parcellation scheme.  458	

 459	
Multimodal and unimodal maps. Importantly, testing the validity of a multimodal map based 460	

on its predictive value remains relatively unexplored. Given that each type of neurobiological 461	

property is differentially informative80, the concept of such map may itself be open to debate. 462	

For example, Glasser et al.’s16 multimodal parcellation gives an excellent separation between 463	

motor and somatosensory areas but does not provide somatotopic or visuotopic information. 464	

Accordingly, the interpretability and relevance of such a map can be debated, although the latter 465	

may be proxied by its predictive value. We initially proposed that a multimodal map would 466	

have more predictive value than any unimodal map. We nevertheless should raise the point that, 467	

conceptually, individual maps may outperform multimodal maps with respect to the prediction 468	

of some phenotypes. For example, a map yielded by tractography mapping could have a higher 469	

predictive value in multiple sclerosis atrophy and symptoms than would a map derived from 470	

resting-state functional connectivity, whereas the latter may have better predictive value for 471	

schizophrenia diagnosis and subtyping. Accordingly, a collection of unimodal maps may have 472	
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its own place in understanding brain-behaviour relationships, and complement multimodal 473	

maps.  474	

 475	

Future questions and challenges 476	

Inter-individual variability. An important consideration for building a general representation 477	

of brain organization pertains to inter-subject variability, which is encountered at all spatial 478	

levels and in all neurobiological properties, from histology6,17,94 to large scale-networks95,96. Group-479	

based parcellation schemes generally capture the main aspects of organization evident across 480	

individuals, whereas the size, shape and position of areas and networks can vary substantially 481	

between individuals5,18,19,76,97 (Fig. 3). Furthermore, divergent patterns of brain organization from 482	

the most common pattern (that is, changes in the spatial arrangement of cortical regions) can 483	

be observed in approximately 5–10% of the healthy population16,19, and care should therefore be 484	

taken to avoid the undue influence of such outliers. Notwithstanding their non-conformation to 485	

a theoretically ‘universal’ map of the brain, such topological outliers, if they do not result from 486	

artefacts, can also be considered to be interesting cases of inter-individual variability to 487	

understand brain–phenotype relationship98. Indeed, recent studies have suggested that the 488	

topography (location and size) of individual-specific brain parcellations is predictive of 489	

individual differences in demographics, cognition, emotion and personality3,5,99. In this context, 490	

we would argue that the quest to understand robust patterns of brain topography across different 491	

markers and the investigation of inter-individual differences are closely intertwined challenges. 492	

Only by understanding the generic characteristic of topographic organization can we start to 493	

appreciate idiosyncrasies and their relationships to socio-demographic, cognitive or affective 494	

profiles.  495	

 496	

Further complicating the understanding of inter-individual differences, regions that show high 497	

interindividual variability often also show substantial changes across ontogenesis and 498	

phylogenesis, and even exhibit inter-hemispheric asymmetry35,95,100,101. This co-existence of 499	

different, albeit related, issues has caused many debates on the true structure and function of 500	

these ‘hot regions’, which include, for example, the inferior portion of the posterior middle 501	

frontal gyrus. Although this region had long been somewhat neglected, the recent multimodal 502	

parcellation by Glasser et al.16 found striking local and connectivity marker changes in that 503	

region relative to adjacent regions, as well as activation during language tasks leading to the 504	

hypothesis of the existence of a new ‘area 55b’ devoted to language functions. However, the 505	

authors also pointed out that this area showed high inter-individual variability. Furthermore, 506	
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meta-analytic investigation revealed an engagement of this region in language functions only 507	

in the left hemisphere68. Generally, as many brain structures seem to be symmetric at the 508	

macrostructural and microstructural levels102, hemispheric symmetry is implicitly assumed and 509	

often prioritized in parcellation studies16,103. Nevertheless, studies that do not pose such 510	

constraints have revealed different patterns of organization across hemispheres (that is, 511	

asymmetry) in neocortical70 but also evolutionarily older brain structures81,104. In sum, the extent 512	

to which the brain is symmetrically organized can be considered as an open question. 513	

Asymmetries in brain structure can be observed early in human development105, but functional 514	

asymmetries are probably further shaped across ontogenesis to varying extents in different 515	

individuals. In other words, functional (a)symmetry is highly variable across individuals, 516	

making it difficult to draw conclusive evidence for a strict symmetry or asymmetry in some 517	

regions. Following these assumptions, future studies should test whether individual patterns of 518	

brain functional asymmetry are associated with or predict individual phenotypes.  519	

 520	

Studies of ontogeny and phylogeny. The question of symmetry and the influence of ontogeny 521	

will become particularly interesting when considering, for example, the prefrontal cortex — a 522	

highly variable, evolutionary new brain region that matures relatively late compared with other 523	

brain regions and shows evidence for strong hemispheric specialization106,107. Both developmental 524	

and phylogenetic aspects, however, are still rarely considered in the context of studies of brain 525	

parcellation, though we expect this may change rapidly. Although multimodal MRI only 526	

captures a limited repertoire of neurobiological properties, it has the advantage of being readily 527	

performed not only at different stages across the human lifespan, but also in non-human 528	

primates or rodents. Comparisons with non-human primates have often highlighted similarities 529	

in brain organization to humans8,108-113, but there is also evidence of differences114. For example, a 530	

recent study has suggested the existence of an area called ‘FPl’ (referring to its lateral frontal 531	

pole location) in humans that lacks correspondence with any region in macaque prefrontal 532	

cortex115. Similarly, the first studies of brain organization in non-human primates with 533	

approaches mirroring those used in humans have only been recently performed44,84,116,117. In turn, 534	

and quite surprisingly, systematic comparisons of parcellations across the human lifespan are 535	

still completely absent, even though there is no doubt that brain structure, function and 536	

connectivity dynamically change throughout the entire human lifespan.  537	

 538	

 539	

 540	
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Conclusions 541	

In contrast to histological brain mapping, which has a long history and is a relatively mature 542	

field, imaging-based parcellation is a recent approach that has evolved across different 543	

dimensions, including various different methods, markers and evaluation approaches. The 544	

recent combination of local and global mapping techniques has raised the opportunity for 545	

parcellations that capture both areal and network organization. This double optimization might 546	

reconcile the objective of optimal whole-brain representation for data compression and accurate 547	

representation of well-defined brain areas for neuroscientific inferences. Recent progresses in 548	

high-field scanners will provide support for mapping of imaging properties that are closer to 549	

the microstructure, such as whole-brain patterns of lamination. We can expect that, in the future, 550	

the application of hybrid algorithms to high-resolution MRI data should open new vistas, in 551	

which brain areas are delineated in vivo based on a combination of information related to their 552	

microstructure and their integration into larger networks.  553	

 554	

From a cartography perspective, the many markers offered by MRI should support robust 555	

mapping of brain areas by crossing partition schemes that are revealed by different modalities. 556	

Nevertheless, considered separately, the different organizational topographies revealed by 557	

markers reflecting different neurobiological properties are also likely to have a crucial role in 558	

our understanding of the organizational dimensions of the brain. Given that these dimensions 559	

underlie the architecture of the human mind, characterizing the relationship between these 560	

topographies and behavioural functions should bring new insight in the understanding of the 561	

human mind, behaviour and dysfunction93. In addition to the richness of MRI markers, large 562	

MRI data sets have been acquired around the world and across different periods of the human 563	

lifespan. The availability of these data opens up new possibilities towards the characterization 564	

and understanding of inter-individual variability, brain asymmetry, as well as the dynamics of 565	

inter-individual variability and brain asymmetry across the lifespan development. Along the 566	

same lines, although parcellation in non-human primates is still in its infancy, it should bring 567	

complementary insights into brain phylogeny. Thus, imaging-based brain parcellation, 568	

following extensive developments and applications in the recent decade, still holds great 569	

promise for revolutionizing our understanding of human brain organization and its relation to 570	

human behaviour. 571	

 572	

Box 1 | Early brain cartography and histological approaches to brain parcellation 573	

The very first endeavours to map the human brain in the 19th and early 20th centuries were 574	
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based on ex vivo investigation of brain microstructure and macrostructure. Flattened out, the 575	

cortex is organized vertically, into columns and dendritic bundles, and horizontally, in layers 576	

parallel to the pial surface. From the earliest studies, these neurobiological features were 577	

observed to vary across the brain. More specifically, properties of these features regularly reveal 578	

zones of homogeneity and abrupt changes between zones. Accordingly, the point at which the 579	

pattern of a marker — for example, the thickness of cortical layers, the size of pyramidal cells 580	

or the extent of myelination — changes represents a border between distinct areas13,118. A 581	

pioneering cartography work illustrating this approach is the map created by Korbinian 582	

Brodmann, widely known as Brodmann areas14. Other researchers of this period, such as Cécile 583	

and Oscar Vogt, capitalized on a different local properties, in particular myeloarchitecture, to 584	

define brain areas119. In addition, the first localization of brain macrostructure in a stereotactic 585	

coordinate system was proposed by Talairach and Tournoux120.  586	

According to the means of their time, all these cartographers transcribed their observations by 587	

manually drawing 2D maps of brain regions on paper. Importantly, these first maps were highly 588	

observer-dependent and based on subjective classification criteria, and therefore suffer from 589	

reproducibility issues121. This motivated the subsequent development of observer-independent 590	

techniques based on computerized image analysis122 using a border-detection approach47,77. 591	

Combined with 3D reconstruction and spatial registration of multiple post-mortem brains into 592	

a standard reference space, this development allowed rigorous investigations of microstructure, 593	

providing evidence for more than 200 histologically distinct brain areas13,123.  594	

Over time, other histological approaches complemented cytoarchitecture and 595	

myeloarchitecture, such as immunochemistry or receptoarchitectonic studies (for a review see 596	

Ref.13). In receptoarchitectonic studies, examining the local density of various transmitter 597	

receptors allows the definition of specific ‘receptor fingerprints’ that differ between cortical 598	

areas, and also reflect functional relationships77. Interestingly, although not all cortical area 599	

borders are reflected by changes in all receptor types, those borders that are evident co-localize 600	

very well with each other but also with cytoarchitectonic and myeloarchitectonic differences77. 601	

As histological mapping is performed on directly observable — rather than modelled or inferred 602	

— markers, it provides important reference points for mapping the human brain. Conversely, 603	

the main drawback of histological brain mapping is the reliance on the use of post-mortem 604	

specimens, thus precluding any comparison with functional data within the same individual. 605	

Moreover, given the labour-intensive preparation of tissue, sample sizes are inevitably and 606	

severely limited. However, developments of high-resolution MRI will offer an alternative 607	
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approach by allowing whole brain microstructural investigations without sample size 608	

restriction. 609	

 610	

Box 2 | Defining brain components with clustering and factorization 611	

Neuroimaging data typically consists of values for thousands of voxels or vertices. Different 612	

approaches can be used to identify latent patterns of spatial organization in the data. These 613	

approaches are frequently referred to as ‘unsupervised learning’ because the spatial pattern is 614	

unknown a priori, in contrast to supervised learning approaches, in which the ‘true’ assignment 615	

of each data point is known a priori. In the framework of brain parcellation, two main 616	

unsupervised learning approaches can be distinguished: clustering and factorization. Clustering 617	

is used to group similar voxels or vertices together and apart from other, different voxels or 618	

vertices, whereas factorization organizes the data sets into dimensions and components that best 619	

represent variations in the data. Please note that this distinction is only for didactic purposes as, 620	

from a mathematical point of view, some clustering algorithms (such as k-means) can be seen 621	

as matrix factorization problems, and some factorization approaches (such as non-negative 622	

matrix factorization [G]  (NMF)) are frequently used within a clustering perspective. 623	

Accordingly, some variants of k-means and NMF are mathematically equivalent124.  624	

 625	

As mentioned above, from a more conceptual point of view, clustering approaches are typically 626	

used to group a set of objects into different groups in such a way that objects from the same 627	

group are more similar to each other than are objects from different groups. The clustering is 628	

based on the mathematical distance (that is, the dissimilarity) between the elements (in this 629	

context, voxels or vertices), computed usually based on their connectivity fingerprints. 630	

Elements are grouped into clusters such that two elements that have similar connectivity 631	

fingerprints are assigned to the same cluster and, conversely, elements that have highly 632	

dissimilar connectivity profile are assigned to different clusters. The most widely used 633	

clustering algorithms in the CBP field are k-means clustering, spectral clustering [G] and 634	

hierarchical clustering [G] (see53 for a comparative study).  635	

 636	

Factorization approaches, by contrast, extract latent dimensions from data or find a low-637	

dimensional representation of the elements’ profiles. The classical matrix factorization is 638	

principal component analysis [G] (PCA), which identifies the main dimensions along which 639	

different data points vary.  640	

 641	
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By contrast, non-negative matrix factorization19 approaches constrain the decomposed 642	

components to be strictly non-negative. Together with additional constraints (e.g., components 643	

are encouraged to be mostly zero, except in small numbers of locations), non-negative matrix 644	

factorization often yields a “part-based” decomposition of the data. For example, when applied 645	

to face photographs, NMF will yield components representing distinct face “parts” (e.g., nose, 646	

eyes, mouth). Accordingly, NMF has an inherent clustering property, which allows the 647	

parcellation of the brain into localized components that mirror brain regions and has thus been 648	

successfully used for whole-brain partitions23,125.  649	

 650	

Importantly, all methods have distinct advantages and disadvantages, and so the choice of the 651	

approach should depend on the data at hand, as well as the objective of the parcellation. For 652	

example, NMF can model many different data distributions owing to the flexibility of matrix 653	

factorization, whereas k-means attempts to capture spherical clusters (in feature space). 654	

However, standard k-means yields a hard clustering, whereby each element (voxel or vertex) is 655	

uniquely assigned to either one cluster or another, whereas factorization approaches (such as 656	

fuzzy or soft clustering [G]71) do not yield a clear, deterministic assignment. In soft 657	

partitioning, any given element (voxel or vertex) can be assigned to several groups, by 658	

obtaining, for example, the probability of assignment to each group. However, a final spatial 659	

‘hard partition’ can be obtained when the scores from fuzzy clustering or factorization are 660	

integrated in a ‘winner-takes-all’ approach126. Nevertheless, comprehensive empirical and 661	

theoretical studies evaluating the advantages and limitations of each approach and variants 662	

thereof for different data sets and parcellation purposes are lacking for clear guidelines of their 663	

use in brain parcellation.  664	

 665	

Box 3 | Main connectivity measures used for parcellation 666	

Traditionally, the term ‘connectivity’ refers to physical connections via white-matter tracts, 667	

which can be demonstrated using invasive tracing techniques in experimental animals or ex 668	

vivo fibre-dissection methods. Moreover, structural connectivity can also be estimated using 669	

tractography based on diffusion-weighted images127 (although see128). By contrast, functional 670	

relationships between different parts of the brain may be revealed by correlating the time series 671	

of signals from different voxels or vertices during task performance or, more commonly, in the 672	

absence of a behavioural task — that is, in the ‘resting state’129. Notably, anatomical and 673	

functional connectivity represent very broad concepts with many different measurement and 674	

computation approaches, each carrying its own advantages and challenges as well as their 675	
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potentially unique contributions to multimodal brain-mapping endeavours. The four approaches 676	

assessing connectivity most frequently used in brain parcellation are resting-state functional 677	

connectivity, meta-analytic connectivity modelling, diffusion tractography and structural 678	

covariance (see the table).  679	

 680	

Meta-analytic connectivity modelling reflects task-based functional organization estimated 681	

from the co-activation patterns of voxels across many studies, whereas structural covariance 682	

reflects functional coupling that is suggested by concurrent morphological variations across a 683	

group of subjects. Both approaches rely on covariation across a population sample (structural 684	

covariance) or multiple group studies (meta-analytic connectivity modelling), in contrast to 685	

probabilistic diffusion tractography and resting-state functional connectivity, in which 686	

measures are inferred independently for each subject. Within the structural versus functional 687	

taxonomy, structural covariance is in an ambiguous position, as it is a proxy for functional 688	

connectivity but inferred from statistical covariance in brain structure.  689	

 690	

CBP was initially developed for connectivity computed at the individual subject level, but was 691	

quickly extended to connectivity inferred from statistical dependencies across a data set. Each 692	

type of connectivity measure has its own strengths and limitations and are prone to particular 693	

artefacts. For example, diffusion tractography might yield spurious results128 due to several 694	

factors. Crossing fibres [G] might cause the tractography model to ‘jump’ between tracts, 695	

leading to false positives. Furthermore, diffusion tractography shows a gyral bias: more 696	

connections may be detected hitting the crown of a gyrus than its wall, owing to intrinsic 697	

geometry of cortical folds130,131. Conversely, tractography may also fail to infer the connectivity 698	

of grey matter voxels or vertices near the pial surface particularly spatially distant from white 699	

matter68. In addition, the limited spatial resolution of current tractography methods can 700	

potentially result in false negative (missed connections), in particular with regards to small 701	

white fibres132.  702	

Functional connectivity approaches are less affected by geometric factors, but signal loss and 703	

distortion are nevertheless common with fMRI near air–tissue interfaces. Furthermore, 704	

functional connectivity approaches are based on statistical dependencies between regions 705	

(either at the subject level in resting-state functional connectivity, or at the group level in meta-706	

analytic connectivity modelling and structural covariance), and are therefore sensitive to 707	

confounding factors. For example, fMRI, particularly rs-fMRI, is sensitive to various systemic 708	

influences such as motion, respiratory and cardiovascular noise133,134. Task-based fMRI might be 709	
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less influenced than rs-fMRI by physiological noise, but is usually more limited than the latter 710	

in terms of sample size (for example, the mean sample size across experiments in the BrainMap 711	

database36 is 12 subjects). Although aggregation of studies (that is, in meta-analyses) can 712	

overcome the size limitation of individual studies, averaging across subjects and studies with 713	

different stereotaxic spaces limits spatial precision. Given that several known and unknown 714	

factors might potentially result in artefactual patterns, one approach for increasing the 715	

likelihood of a parcellation representing some true biological property is to retain only patterns 716	

that are consistent across markers and methods. 717	

 718	

 719	

fMRI, functional MRI; PET, positron emission tomography; ROI, region of interest, WM, white matter. 720	
 721	

 722	

Fig. 1 | A two-dimensional taxonomy of brain parcellation approaches. Parcellation 723	

approaches could be classified along two dimensions. The marker dimension ranges from 724	

markers that capitalize on local properties of brain tissues, such as cell body density or fMRI 725	

signal time course, to markers that capitalize on connectivity fingerprint48 across the brain. The 726	

other dimension categorizes parcellation approaches according to the algorithm used for 727	

defining parcels, distinguishing local boundary-mapping techniques55 from global clustering (or 728	

Type Data 
measured 

Main method Variant 
methods 

Parameters Ref 

fMRI and PET imaging (functional) 
Task-based 
fMRI and 
PET 

Activation 
during task 

Meta-analytic 
connectivity 
modeling 

Within-fMRI 
study 
functional 
connectivity 

• Task domains 
• Map or peak data 

65 

Resting-
state fMRI 

Signal 
fluctuations 
at rest 

Cross-time 
correlation in 
signal 
fluctuations 

 • Signal denoising 
• Target voxels or 

ROI 

55 

Imaging of co-plasticity (structural) 
Anatomical 
MRI 

Structural 
variation in 
morphology 
in 
anatomical 
scan 

Cross-subject 
correlation in 
grey-matter 
volume 
(structural 
covariance)* 

Cortical 
thickness135 

• Segment 
modulation 

• Smoothing 
• Target voxels or 

ROI 

6466 

Structural or anatomical 
Diffusion 
MRI 

Estimation 
of fibre 
direction 

Probabilistic 
diffusion 
tractography 

Deterministic 
tractography 

• Seed WM 
masking  

• Target voxels or 
ROI 

49 
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factorization) approaches. In theory, any type of parcellation approach can be used for regional 729	

or whole-brain parcellation. Accordingly, each cell illustrates an example application of a local 730	

(left column) or global (right column) parcellation technique to markers of local (top row) or 731	

global (bottom row) properties. Top left cell: Regions of the JuBrain atlas identified by border 732	

detection according to architectonic properties (illustration from ref. 11). Top right cell: 733	

Parcellation of the amygdala into subregions with a clustering approach applied to behavioural 734	

meta-analytic data35 (activation studies across a wide range of paradigms probing cognitive, 735	

motor and socio-affective functions from the BrainMap database36). Bottom left cell: 736	

Parcellation of the cerebral cortex based on boundary mapping applied to resting-state 737	

functional connectivity59 (illustration from ref. 11). Bottom right cell: Parcellation of the cerebral 738	

cortex into functional networks based on clustering applied to the resting-state functional 739	

connectivity70. 740	

Fig. 2 | Mapping of visual areas with local markers. Different parcellations approaches 741	

converge towards similar delineations of visual areas. Visuotopic mapping (based on fMRI) 742	

and cytoarchitecture mapping (based on ex-vivo brain tissues) show consistency in the 743	

delineation of V1 from V2. Furthermore, myelin mapping (based here on MRI) distinguishes 744	

V1 and V2 from higher visual areas in a similar way than visuotopic and cytoarchitecture 745	

mapping do. a | Delineation of V1 and V2 based on fMRI visuotopic mapping136. b | Mapping 746	

of visual areas based on cytoarchitecture137 (illustration from31). c | Myelin mapping, based on 747	

MRI T1-weighted-to-T2-weighted ratio41, differentiates V1 and V2, which are heavily 748	

myelinated (red), from higher visual areas (such as V3), which show lower myelin ratios 749	

(yellow, green). 750	

Fig. 3 | Interindividual variability in functional parcellation. Organization of individual-751	

specific cortical parcellations echoes that of group-level parcellations, but also exhibits 752	

substantial inter-individual variability.  a | Network-level parcellations of Human Connectome 753	

Project (HCP) individuals using half hour of resting-state fMRI data per participant18. b | By 754	

exploiting a large quantity of data (5 hours per participant) from the Midnight Scan Club, highly 755	

detailed network-level (left) and area-level (right) parcellations of individual participants were 756	

generated97. c | Recent algorithmic advances allow the delineation of highly detailed network-757	

level parcellations using half hour of data per HCP participant5. Consistent with multiple 758	

studies, individual-specific networks exhibit unique topological features that are highly 759	

replicable across two different days (black arrows).  760	
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Table 1 | Whole-brain or cortical parcellations available for download or visualization. 761	

Name (group or 
institution) 

Brain 
coverage 

Granu
larity 
(num
ber of 
parcel
/netw
orks)a 

Original 
format 
(and 
other 
format) 

Link  Refs 

Macroanatomy      
Automated Anatomical 
Labeling (AAL) Atlas  

Whole 
brain  

82 
parcel
s 

Volume http://www.gin.cnrs.fr/en/tools/aal-aal2/ 138 

Harvard-Oxford Atlas  Cerebrum  69 
parcel
s 

Volume Included in the installation package of FSL 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) 
and MRICRON 
(http://www.mccauslandcenter.sc.edu/mricr
o/mricron) and can be found here: 
http://neuro.debian.net/pkgs/fsl-harvard-
oxford-atlases.html 

139,140,

141,142 

Desikan–Killiany Atlas  Cerebral 
cortex 

70 
parcel
s 

Surface Included in the installation package of 
Freesurfer: 
https://surfer.nmr.mgh.harvard.edu/fswiki/C
orticalParcellation 

141 

Destrieux Atlas  Cerebral 
cortex 

148 
parcel
s 

Surface Included in the installation package of 
Freesurfer: 
https://surfer.nmr.mgh.harvard.edu/fswiki/C
orticalParcellation 

143 

MarsAtlas  Cerebrum 89 
parcel
s 

Surface 
and 
volume 

http://meca-brain.org/software/marsatlas-
colin27/ 

144 

Rs-fMRI      
Bellec et al. (2010) Whole 

brain  
7, 12, 
20, 
36, 
64, 
122, 
197, 
325, 
444 
parcel
s 

Volume https://figshare.com/articles/Group_multisca
le_functional_template_generated_with_BAS
C_on_the_Cambridge_sample/1285615 

61 

Power et al. (2011) Cerebrum  14 
netwo
rks 

Volume https://www.jonathanpower.net/2011-
neuron-bigbrain.html 

145 

Yeo et al. (2011), 
Buckner et al. (2011) 
and Choi et al. (2012)  

Cerebral 
cortex, 
cerebellum 
and 
striatum 

7 and 
17 
netwo
rks 

Surface 
of 
cerebral 
cortex, 
and 
volume 
of 
cerebell
um and 
striatu

Included in the installation package of 
Freesurfer: 
https://surfer.nmr.mgh.harvard.edu/fswiki/C
orticalParcellation_Yeo2011, 
http://surfer.nmr.mgh.harvard.edu/fswiki/Ce
rebellumParcellation_Buckner2011 and 
https://surfer.nmr.mgh.harvard.edu/fswiki/St
riatumParcellation_Choi2012 
 

70;146; 
147 
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m  The 7 and 17 spatially distributed cortical 
networks have also been converted into 51 
and 114 spatially connected parcels, 
respectively : 
https://github.com/ThomasYeoLab/CBIG/tree
/master/stable_projects/brain_parcellation/Y
eo2011_fcMRI_clustering 

Craddock et al. (2012) Whole 
brain  

10 to 
1000 
parcel
s 

Volume http://ccraddock.github.io/cluster_roi/atlases
.html 

83 

Shen et al. (2013) Whole 
brain  

93, 
184, 
278 
parcel
s 

Volume www.nitrc.org/frs/?group_id=51 148 

Gordon et al. (2016) Cerebral 
cortex 

333 
parcel
s 

Surface 
(and 
volume) 

www.nil.wustl.edu/labs/petersen/Resources.
html  

59 
 

Atlas of Intrinsic 
Connectivity of 
Homotopic Areas 

Cerebrum  384 
parcel
s 

Volume In the installation package of AAL toolbox 
(http://www.gin.cnrs.fr/en/tools/aal-aal2/) 
and MRIcron 
(http://www.mccauslandcenter.sc.edu/mricr
o/mricron) and can be found here: 
https://omictools.com/atlas-of-intrinsic-
connectivity-of-homotopic-areas-tool 
 

149 

Wang et al. (2015) Cerebral 
cortex 

18 
netwo
rks 

Surface Pre-compiled code for individual-specific 
network parcellations: 
http://nmr.mgh.harvard.edu/bid/download.h
tml 

18  

Gordon et al. (2017) Cerebral 
cortex 

Subje
ct 
depen
dent 

Surface Individual-specific network and areal-level 
parcellations for the Midnight Scan Club 
subjects: 
https://www.openfmri.org/dataset/ds000224
/ 

 97 

Schaefer et al. (2018) Cerebral 
cortex 

100, 
200, 
400, 
600, 
800, 
1000 
parcel
s 

Surface 
(and 
volume) 

https://github.com/ThomasYeoLab/CBIG/tree
/master/stable_projects/brain_parcellation/S
chaefer2018_LocalGlobal 

54 

Kong et al. (2018) Cerebral 
cortex 

17 
netwo
rks 

Surface Code for individual-specific network 
parcellations: 
https://github.com/ThomasYeoLab/CBIG/tree
/master/stable_projects/brain_parcellation/K
ong2019_MSHBM 

 5 

Other      
PrAGMATiC, based on 
task fMRI  

Cerebral 
cortex 

320 
parcel
s 

Volume 
(and 
surface) 

For visualization only: 
http://gallantlab.org/huth2016/ 

33,150 

Brainnetome, based on 
PDT  

Cerebral 
cortex and 

246 
parcel

Volume http://atlas.brainnetome.org/download.html 103 
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subcortical 
structures 

s 

Varikuti et al. (2018), 
based on sMRI (SC)  

Whole 
brain  

2 to 
500 
parcel
s 
 

Volume http://anima.fz-
juelich.de/studies/Varikuti_NMFBrainAge_20
18 

23 

HCP Multimodal 
Parcellation, Glasser et 
al. (2016)  

Cerebral 
cortex 

360 
parcel
s 

Surface https://balsa.wustl.edu/WN56	 16 

a‘Granularity’	 refers	 to	 the	 number	 of	 parcels,	 clusters/components	 or	 networks.	 Only	762	
parcellations	or	segmentations	based	on	MRI	data	are	reported	in	this	table.	Manual	segmentation	763	
and	atlas	based	on	other	techniques	(for	example,	Brodmann	atlas)	have	not	been	included	here.	764	
The	 atlases	 are	 organized	 by	 modality	 and	 by	 publication	 date	 within	 each	 modality.	 AAL,	765	
automated	anatomical	labeling;	HCP,	Human	Connectome	Project;	FSL,	FMRIB	Software	Library;	766	
PDT,	probabilistic	diffuction	tractography.	767	
 768	
 769	

 770	

Large-scale networks 771	

Constellations of brain areas that are strongly connected to each other, presumably subserving 772	

specific functions.  773	

 774	

Connectivity fingerprint 775	

The pattern of interactions between a brain region and other brain regions. 776	

 777	

Brain cartography 778	

The study of brain organization with the particular objective of representing the organization 779	

of the brain as a map of distinct areas.  780	

 781	

Brain area 782	

A brain region showing specific structure, function and connectivity. 783	

 784	

Universal map 785	

A unique division of the brain into individual areas, each having specific structure, connectivity 786	

and function, and can be found in all humans.  787	

  788	

Graph theory 789	

The use of graphs to study and model relationships between objects with elements such as nodes 790	

and edges.  791	

 792	
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Cytoarchitecture 793	

Tissue composition with regards to cell characteristics.  794	

 795	

Myeloarchitecture 796	

The pattern of myelinated fibres. 797	

 798	

Visuotopic mapping 799	

Identification of visual areas based on differential cortical responses to different visual stimuli. 800	

An example of a mapping stimulus would be a rotating sector of a flashing checkerboard. 801	

 802	

Echo planar imaging 803	

An MRI sequence used for functional and diffusion imaging.  804	

 805	

Meta-analytic connectivity modelling 806	

Method that aims to model functional connectivity in the brain based on co-activation pattern 807	

across various activation studies.  808	

 809	

Probabilistic tractography 810	

An approach to estimate white-matter tract pathways in the brain from diffusion MRI images.  811	

 812	

Structural covariance 813	

Pattern of co-variations in measures of morphometry (such as grey matter volume) across 814	

brain regions. 815	

 816	

k-means 817	

A clustering algorithm that divides a set of data points into k clusters by iteratively optimizing 818	

the definition of each cluster centroid and data points assigned to the clusters. 819	

 820	

Domains 821	

Spatial units in the brain that are smaller than usual brain regions and show specific functions. 822	

 823	

Non-negative matrix factorization 824	

A multivariate statistical approach to factorize data into components promoting part-based 825	

representation of the data. 826	
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 827	

Spectral clustering  828	

A clustering approach based on the eigenvectors of the matrix of similarity (e.g., 829	

connectivity) between brain locations (voxels/vertices). The terms “spectral” refers to the 830	

spectrum (eigenvalues) of the similarity matrix. 831	

 832	

Hierarchical clustering 833	

A clustering approach that disentangle clusters in a hierarchical fashion, in such a way 834	

that clusters’ relationships can be visualized as a tree structure.  835	

 836	

Principal component analysis 837	

A multivariate statistical approach to factorize data into orthogonal components that best 838	

represent variance in the data.  839	

 840	

Fuzzy clustering 841	

A clustering approach in which points are not assigned to one single group, but have a fractional 842	

value that represents their relative membership in each group.  843	

 844	

Crossing fibres 845	

Individual white matter fibers whose spatial direction result in point where they meet or cross 846	

each other complicating the estimation of their respective path.  847	

 848	
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