000856715 001__ 856715
000856715 005__ 20240711092238.0
000856715 0247_ $$2doi$$a10.1007/s11669-018-0647-y
000856715 0247_ $$2ISSN$$a1547-7037
000856715 0247_ $$2ISSN$$a1863-7345
000856715 0247_ $$2WOS$$aWOS:000441127400004
000856715 037__ $$aFZJ-2018-06066
000856715 082__ $$a530
000856715 1001_ $$0P:(DE-HGF)0$$aZhang, J.$$b0
000856715 245__ $$aPhase Transformations in Co-Ni-Cr-W Alloys During High Temperature Exposure to Steam Environment
000856715 260__ $$aBoston, Mass.$$bSpringer$$c2018
000856715 3367_ $$2DRIVER$$aarticle
000856715 3367_ $$2DataCite$$aOutput Types/Journal article
000856715 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540888983_3404
000856715 3367_ $$2BibTeX$$aARTICLE
000856715 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856715 3367_ $$00$$2EndNote$$aJournal Article
000856715 520__ $$aThree model alloys, Co-10Ni-20Cr-15W, Co-30Ni-20Cr-15W and Ni-20Cr-15W (all in wt.%) were investigated in Ar-50%H2O at 700 and 750 °C for up to 3000 h reaction. The results showed the formation of thin chromia scales on the sample surfaces in all cases. For the Co-base alloys, accompanied by the Cr2O3 formation, a chromium depletion zone was detected underneath the oxide scale along with Co3W with some amount of dissolved Cr and Ni. This kind of Co3W was enriched along the oxide/alloy interface. The formation of this intermetallic phase was considered to follow nucleation and subsequent growth based on morphology and composition analyses. Increasing nickel content reduced the amount of Co3W formation. For the nickel-base alloy Ni-20Cr-15W, no intermetallic phase was detected. The formation of the Co3W intermetallic was discussed based on phase transformation induced by chromium depletion. The effect of nickel on this phenomenon was also discussed according to thermodynamic phase equilibrium analysis.
000856715 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000856715 588__ $$aDataset connected to CrossRef
000856715 7001_ $$0P:(DE-HGF)0$$aGarcia-Fresnillo, L.$$b1
000856715 7001_ $$0P:(DE-Juel1)139042$$aJalowicka, A.$$b2$$eCorresponding author
000856715 7001_ $$0P:(DE-Juel1)156565$$aPillai, R.$$b3$$ufzj
000856715 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, D.$$b4$$ufzj
000856715 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b5$$ufzj
000856715 773__ $$0PERI:(DE-600)2552809-9$$a10.1007/s11669-018-0647-y$$gVol. 39, no. 4, p. 387 - 400$$n4$$p387 - 400$$tJournal of phase equilibria and diffusion$$v39$$x1863-7345$$y2018
000856715 8564_ $$uhttps://juser.fz-juelich.de/record/856715/files/20181026104125770.pdf
000856715 8564_ $$uhttps://juser.fz-juelich.de/record/856715/files/Zhang2018_Article_PhaseTransformationsInCo-Ni-Cr.pdf$$yRestricted
000856715 8564_ $$uhttps://juser.fz-juelich.de/record/856715/files/20181026104125770.pdf?subformat=pdfa$$xpdfa
000856715 8564_ $$uhttps://juser.fz-juelich.de/record/856715/files/Zhang2018_Article_PhaseTransformationsInCo-Ni-Cr.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856715 8767_ $$82936124432$$92018-09-17$$d2018-10-26$$eColour charges$$jZahlung erfolgt$$p8275425
000856715 909CO $$ooai:juser.fz-juelich.de:856715$$popenCost$$pOpenAPC$$pVDB
000856715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139042$$aForschungszentrum Jülich$$b2$$kFZJ
000856715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156565$$aForschungszentrum Jülich$$b3$$kFZJ
000856715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b4$$kFZJ
000856715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b5$$kFZJ
000856715 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000856715 9141_ $$y2018
000856715 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856715 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHASE EQUILIB DIFF : 2017
000856715 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856715 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856715 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856715 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856715 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856715 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856715 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856715 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856715 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000856715 9801_ $$aAPC
000856715 980__ $$ajournal
000856715 980__ $$aVDB
000856715 980__ $$aI:(DE-Juel1)IEK-2-20101013
000856715 980__ $$aAPC
000856715 980__ $$aUNRESTRICTED
000856715 981__ $$aI:(DE-Juel1)IMD-1-20101013