000856718 001__ 856718
000856718 005__ 20210129235349.0
000856718 0247_ $$2doi$$a10.1016/j.bpj.2018.07.039
000856718 0247_ $$2ISSN$$a0006-3495
000856718 0247_ $$2ISSN$$a1542-0086
000856718 0247_ $$2pmid$$apmid:30197181
000856718 0247_ $$2WOS$$aWOS:000446056300010
000856718 0247_ $$2altmetric$$aaltmetric:48112478
000856718 037__ $$aFZJ-2018-06069
000856718 082__ $$a570
000856718 1001_ $$0P:(DE-HGF)0$$aDos Santos Morais, Raphael$$b0
000856718 245__ $$aHuman Dystrophin Structural Changes upon Binding to Anionic Membrane Lipids
000856718 260__ $$aBethesda, Md.$$bSoc.$$c2018
000856718 3367_ $$2DRIVER$$aarticle
000856718 3367_ $$2DataCite$$aOutput Types/Journal article
000856718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542896879_6135
000856718 3367_ $$2BibTeX$$aARTICLE
000856718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856718 3367_ $$00$$2EndNote$$aJournal Article
000856718 520__ $$aScaffolding proteins play important roles in supporting the plasma membrane (sarcolemma) of muscle cells.Among them, dystrophin strengthens the sarcolemma through protein-lipid interactions, and its absence due to gene mutationsleads to the severe Duchenne muscular dystrophy. Most of the dystrophin protein consists of a central domain made of 24 spec-trin-like coiled-coil repeats (R). Using small angle neutron scattering (SANS) and the contrast variation technique, we specificallyprobed the structure of the three first consecutive repeats 1–3 (R1–3), a part of dystrophin known to physiologically interact withmembrane lipids. R1–3 free in solution was compared to its structure adopted in the presence of phospholipid-based bicelles.SANS data for the protein/lipid complexes were obtained with contrast-matched bicelles under various phospholipid composi-tions to probe the role of electrostatic interactions. When bound to anionic bicelles, large modifications of the protein three-dimensional structure were detected, as revealed by a significant increase of the protein gyration radius from 42 51 to60 54 A˚. R1–3/anionic bicelle complexes were further analyzed by coarse-grained molecular dynamics simulations. Fromthese studies, we report an all-atom model of R1–3 that highlights the opening of the R1 coiled-coil repeat when bound tothe membrane lipids. This model is totally in agreement with SANS and click chemistry/mass spectrometry data. We concludethat the sarcolemma membrane anchoring that occurs during the contraction/elongation process of muscles could be ensuredby this coiled-coil opening. Therefore, understanding these structural changes may help in the design of rationalized shorteneddystrophins for gene therapy. Finally, our strategy opens up new possibilities for structure determination of peripheral and inte-gral membrane proteins not compatible with different high-resolution structural methods.
000856718 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000856718 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000856718 588__ $$aDataset connected to CrossRef
000856718 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000856718 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000856718 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000856718 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000856718 7001_ $$0P:(DE-HGF)0$$aDelalande, Olivier$$b1
000856718 7001_ $$0P:(DE-HGF)0$$aPérez, Javier$$b2
000856718 7001_ $$0P:(DE-HGF)0$$aMias-Lucquin, Dominique$$b3
000856718 7001_ $$0P:(DE-HGF)0$$aLagarrigue, Mélanie$$b4
000856718 7001_ $$0P:(DE-HGF)0$$aMartel, Anne$$b5
000856718 7001_ $$0P:(DE-HGF)0$$aMolza, Anne-Elisabeth$$b6
000856718 7001_ $$0P:(DE-HGF)0$$aChéron, Angélique$$b7
000856718 7001_ $$0P:(DE-HGF)0$$aRaguénès-Nicol, Céline$$b8
000856718 7001_ $$0P:(DE-HGF)0$$aChenuel, Thomas$$b9
000856718 7001_ $$0P:(DE-HGF)0$$aBondon, Arnaud$$b10
000856718 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b11$$ufzj
000856718 7001_ $$0P:(DE-HGF)0$$aLe Rumeur, Elisabeth$$b12
000856718 7001_ $$0P:(DE-HGF)0$$aCombet, Sophie$$b13$$eCorresponding author
000856718 7001_ $$0P:(DE-HGF)0$$aHubert, Jean-François$$b14$$eCorresponding author
000856718 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2018.07.039$$gVol. 115, no. 7, p. 1231 - 1239$$n7$$p1231 - 1239$$tBiophysical journal$$v115$$x0006-3495$$y2018
000856718 8564_ $$uhttps://juser.fz-juelich.de/record/856718/files/10.1016_j.bpj.2018.07.039.pdf$$yRestricted
000856718 8564_ $$uhttps://juser.fz-juelich.de/record/856718/files/10.1016_j.bpj.2018.07.039.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856718 909CO $$ooai:juser.fz-juelich.de:856718$$pVDB$$pVDB:MLZ
000856718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b11$$kFZJ
000856718 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000856718 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000856718 9141_ $$y2018
000856718 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOPHYS J : 2017
000856718 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856718 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856718 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856718 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856718 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856718 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000856718 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000856718 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856718 920__ $$lyes
000856718 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000856718 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000856718 980__ $$ajournal
000856718 980__ $$aVDB
000856718 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000856718 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000856718 980__ $$aUNRESTRICTED