| Hauptseite > Publikationsdatenbank > Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains > print |
| 001 | 856721 | ||
| 005 | 20210129235350.0 | ||
| 024 | 7 | _ | |a 10.1074/jbc.M117.807503 |2 doi |
| 024 | 7 | _ | |a 0021-9258 |2 ISSN |
| 024 | 7 | _ | |a 1067-8816 |2 ISSN |
| 024 | 7 | _ | |a 1083-351X |2 ISSN |
| 024 | 7 | _ | |a 2128/20157 |2 Handle |
| 024 | 7 | _ | |a pmid:29643180 |2 pmid |
| 024 | 7 | _ | |a WOS:000434941900010 |2 WOS |
| 024 | 7 | _ | |a altmetric:47404787 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-06072 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Halawani, Dalia |0 0000-0003-4738-0656 |b 0 |
| 245 | _ | _ | |a Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains |
| 260 | _ | _ | |a Bethesda, Md. |c 2018 |b Soc.72889 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1542895884_6135 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Aminoacyl-tRNA synthetases are ubiquitous, evolutionarilyconserved enzymes catalyzing the conjugation of amino acidsonto cognate tRNAs. During eukaryotic evolution, tRNA syn-thetases have been the targets of persistent structural modifica-tions. These modifications can be additive, as in the evolution-ary acquisition of noncatalytic domains, or subtractive, as in thegeneration of truncated variants through regulated mechanismssuch as proteolytic processing, alternative splicing, or codingregion polyadenylation. A unique variant is the human glu-tamyl-prolyl-tRNA synthetase (EPRS) consisting of two fusedsynthetases joined by a linker containing three copies of theWHEP domain (termed by its presence in tryptophanyl-, histi-dyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identifysite-selective proteolysis as a mechanism that severs the linkagebetween the EPRS synthetases in vitro and in vivo. Caspaseaction targeted Asp-929 in the third WHEP domain, therebyseparating the two synthetases. Using a neoepitope antibodydirected against the newly exposed C terminus, we demonstrateEPRS cleavage at Asp-929 in vitro and in vivo. Biochemical andbiophysical characterizations of the N-terminally generatedEPRS proteoform containing the glutamyl-tRNA synthetaseand most of the linker, including two WHEP domains, com-bined with structural analysis by small-angle neutron scattering,revealed a role for the WHEP domains in modulating conforma-tions of the catalytic core and GSH–S-transferase–C-terminal-like (GST-C) domain. WHEP-driven conformational rearrange-ment altered GST–C domain interactions and conferreddistinct oligomeric states in solution. Collectively, our resultsreveal long-range conformational changes imposed by theWHEP domains and illustrate how noncatalytic domains canmodulate the global structure of tRNA synthetases in complexeukaryotic systems. |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 1 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-1: Small angle scattering diffractometer |f NL3b |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS1-20140101 |5 EXP:(DE-MLZ)KWS1-20140101 |6 EXP:(DE-MLZ)NL3b-20140101 |x 0 |
| 700 | 1 | _ | |a Gogonea, Valentin |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a DiDonato, Joseph A. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Pipich, Vitaliy |0 P:(DE-Juel1)130893 |b 3 |
| 700 | 1 | _ | |a Yao, Peng |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a China, Arnab |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Topbas, Celalettin |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Vasu, Kommireddy |0 0000-0002-7608-7566 |b 7 |
| 700 | 1 | _ | |a Arif, Abul |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Hazen, Stanley L. |0 0000-0001-7124-6639 |b 9 |
| 700 | 1 | _ | |a Fox, Paul L. |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1074/jbc.M117.807503 |g Vol. 293, no. 23, p. 8843 - 8860 |0 PERI:(DE-600)1474604-9 |n 23 |p 8843 - 8860 |t The journal of biological chemistry |v 293 |y 2018 |x 1083-351X |
| 856 | 4 | _ | |y Published on 2018-04-11. Available in OpenAccess from 2019-04-11. |u https://juser.fz-juelich.de/record/856721/files/J.%20Biol.%20Chem.-2018-Halawani-8843-60.pdf |
| 856 | 4 | _ | |y Published on 2018-04-11. Available in OpenAccess from 2019-04-11. |x pdfa |u https://juser.fz-juelich.de/record/856721/files/J.%20Biol.%20Chem.-2018-Halawani-8843-60.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:856721 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130893 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 1 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J BIOL CHEM : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|