001     856726
005     20210129235352.0
024 7 _ |a 10.1021/acs.macromol.8b01019
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a WOS:000444792400040
|2 WOS
037 _ _ |a FZJ-2018-06077
082 _ _ |a 540
100 1 _ |a Sokolowski, Marek
|0 0000-0002-6989-9996
|b 0
|e Corresponding author
245 _ _ |a Preparation of Polymer Brush Grafted Anionic or Cationic Silica Nanoparticles: Systematic Variation of the Polymer Shell
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542897372_6134
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymer brush grafted anionic SiO2@PMAA (poly(methacrylic acid)) and cationic SiO2@PDMAEMA (poly(2-(dimethylamino)ethyl methacrylate)) inorganic/polymer hybrid nanoparticles with different core radii (dNP = 50–140 nm) and different amounts of attached polymer were synthesized via surface-initiated atomic transfer radical polymerization (ATRP). To avoid irreversible aggregation, a three-step surface modification had to be employed, thereby keeping the nanoparticles always dispersed. For SiO2@PMAA the shell thickness changes with the monomer concentration, while for SiO2@PDMAEMA the grafting density was changed by monomer concentration and the shell thickness remained constant. We assume that the control over the grafting density relies on the nature of the complexation potential of the PDMAEMA. The structural characterization of the polymer grafted SiO2-NPs was done in detail by different scattering methods combined with thermogravimetric analysis, and details of the brush characteristics are obtained by small-angle neutron scattering (SANS). With this approach we were able to produce silica nanoparticles with anionic and cationic polymer shells, where the softness of the NPs can be controlled by the amount of polymer, which are pH-responsive and colloidally stable over a large pH range.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Bartsch, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Spiering, Vivian J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Prévost, Sylvain
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Appavou, Marie-Sousai
|0 P:(DE-Juel1)130507
|b 4
|u fzj
700 1 _ |a Schweins, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gradzielski, Michael
|0 0000-0002-7262-7115
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.macromol.8b01019
|g Vol. 51, no. 17, p. 6936 - 6948
|0 PERI:(DE-600)1491942-4
|n 17
|p 6936 - 6948
|t Macromolecules
|v 51
|y 2018
|x 1520-5835
856 4 _ |u https://juser.fz-juelich.de/record/856726/files/acs.macromol.8b01019.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856726/files/acs.macromol.8b01019.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856726
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130507
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOLECULES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACROMOLECULES : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21