001     856757
005     20210129235356.0
024 7 _ |a 10.1002/pssb.201800235
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a 2128/19887
|2 Handle
024 7 _ |a WOS:000447304700016
|2 WOS
037 _ _ |a FZJ-2018-06101
082 _ _ |a 530
100 1 _ |a Schleicher, Sebastian
|0 P:(DE-Juel1)169158
|b 0
|e Corresponding author
245 _ _ |a Ultra-High Vacuum Deposition of Pyrene Molecules on Metal Surfaces
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2018-09-09
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2018-10-01
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2018-10-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540889286_11531
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interfacial properties of organic adsorbates featuring aromatic π‐orbitals on metal surfaces play an important role for organic electronics and spintronics. Pyrene is a flat aromatic molecule with a size between ultimately small benzene and extended graphene segments. The deposition of pyrene molecules onto clean and reactive surfaces with a sub‐monolayer coverage under ultra‐high vacuum (UHV) conditions is challenging, since pyrene is a solid with a high vapor pressure. Here, a sublimation procedure under UHV and image pyrene adlayers on in situ prepared Au(111) and Fe/W(110) substrates by means of low‐temperature scanning tunneling microscopy is presented. For Au(111), the molecule–surface interaction is weak as indicated by the specific herringbone reconstruction of the Au(111) surface that is visible through the self‐assembled pyrene adlayer. Pyrene desorption due to weak intermolecular interaction self‐limits the growth to one monolayer (ML). On the more reactive 2–4 ML thick Fe films on W(110), the molecular order of the pyrene adlayer sensitively depends on the Fe thickness‐dependent dislocation pattern at the substrate surface. Irregular arrangements occur for 1 ML Fe and near substrate dislocations for 2–4 ML Fe. Self‐assembled ordered arrays form predominantly for 2 ML Fe, where the dislocation pattern leaves sufficiently large unperturbed areas between the dislocation lines.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
542 _ _ |i 2018-09-09
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
542 _ _ |i 2018-09-09
|2 Crossref
|u http://onlinelibrary.wiley.com/termsAndConditions#vor
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borca, Bogdana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rawson, Jeffrey
|0 P:(DE-Juel1)171575
|b 2
700 1 _ |a Matthes, Frank
|0 P:(DE-Juel1)130822
|b 3
700 1 _ |a Bürgler, Daniel E.
|0 P:(DE-Juel1)130582
|b 4
700 1 _ |a Kögerler, Paul
|0 P:(DE-Juel1)130782
|b 5
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 6
773 1 8 |a 10.1002/pssb.201800235
|b : Wiley, 2018-09-09
|n 10
|p 1800235
|3 journal-article
|2 Crossref
|t physica status solidi (b)
|v 255
|y 2018
|x 0370-1972
773 _ _ |a 10.1002/pssb.201800235
|g Vol. 255, no. 10, p. 1800235 -
|0 PERI:(DE-600)1481096-7
|n 10
|p 1800235
|t Physica status solidi / B
|v 255
|y 2018
|x 0370-1972
856 4 _ |u https://juser.fz-juelich.de/record/856757/files/Schleicher_et_al-2018-physica_status_solidi_b.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/856757/files/Schleicher_et_al-2018-physica_status_solidi_b.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-09-09. Available in OpenAccess from 2019-09-09.
|u https://juser.fz-juelich.de/record/856757/files/UHV_deposition_of_pyrene_on_metal_surfaces___Physica_Status_Solidi_B.pdf
856 4 _ |y Published on 2018-09-09. Available in OpenAccess from 2019-09-09.
|x pdfa
|u https://juser.fz-juelich.de/record/856757/files/UHV_deposition_of_pyrene_on_metal_surfaces___Physica_Status_Solidi_B.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:856757
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21