000856817 001__ 856817
000856817 005__ 20240711113912.0
000856817 0247_ $$2doi$$a10.1142/S1793962318500484
000856817 0247_ $$2Handle$$a2128/19888
000856817 0247_ $$2WOS$$aWOS:000454060600013
000856817 037__ $$aFZJ-2018-06158
000856817 082__ $$a004
000856817 1001_ $$0P:(DE-Juel1)5089$$aTokar, Mikhail$$b0$$eCorresponding author
000856817 245__ $$aAccelerated procedure to solve kinetic equation for neutral atoms in a hot plasma
000856817 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c2018
000856817 264_1 $$2Crossref$$3online$$bWorld Scientific Pub Co Pte Lt$$c2018-10-30
000856817 264_1 $$2Crossref$$3print$$bWorld Scientific Pub Co Pte Lt$$c2018-10-01
000856817 264_1 $$2Crossref$$3print$$bWorld Scientific Pub Co Pte Lt$$c2018-10-01
000856817 3367_ $$2DRIVER$$aarticle
000856817 3367_ $$2DataCite$$aOutput Types/Journal article
000856817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540904638_9674
000856817 3367_ $$2BibTeX$$aARTICLE
000856817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856817 3367_ $$00$$2EndNote$$aJournal Article
000856817 520__ $$aBy reaching the first wall of a fusion reactor, charged plasma particles, electrons and ions are recombined into neutral molecules and atoms of hydrogen isotopes. These species recycle back into the plasma volume and participate, in particular, in charge–exchange (cx) collisions with ions. As a result, hot atoms with chaotically directed velocities are generated and some of them hit the wall. Statistical Monte Carlo methods often used to model the behavior of cx atoms are too time-consuming for comprehensive parameter studies. Recently1 an alternative iteration approach to solve one-dimensional kinetic equation2 has been significantly accelerated, by a factor of 30–50, by applying a pass method to evaluate the arising integrals from functions, involving the ion velocity distribution. Here, this approach is used by solving a two-dimensional kinetic equation, describing the transport of cx atoms in the vicinity of an opening in the wall, e.g., the entrance of a duct guiding to a diagnostic installation. To assess the erosion rate and lifetime of the installation, one need to know the energy spectrum of hot cx atoms escaping from the plasma into the duct. Calculations are done for a first mirror of molybdenum under plasma conditions expected in a fusion reactor like DEMO.3,4 The results of kinetic modeling are compared with those found by using a diffusion approximation5 relevant for cx atoms if the time between cx collisions with ions is much smaller than the time till the ionization of atoms by electrons. The present more exact kinetic consideration predicts a mirror erosion rate by a factor of 2 larger than the approximate diffusion approach.
000856817 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000856817 588__ $$aDataset connected to CrossRef
000856817 77318 $$2Crossref$$3journal-article$$a10.1142/s1793962318500484$$b : World Scientific Pub Co Pte Lt, 2018-10-01$$n05$$p1850048$$tInternational Journal of Modeling, Simulation, and Scientific Computing$$v09$$x1793-9623$$y2018
000856817 773__ $$0PERI:(DE-600)2897753-1$$a10.1142/S1793962318500484$$gVol. 09, no. 05, p. 1850048 -$$n05$$p1850048$$tInternational journal of modeling, simulation, and scientific computing$$v09$$x1793-9623$$y2018
000856817 8564_ $$uhttps://juser.fz-juelich.de/record/856817/files/s1793962318500484.pdf$$yRestricted
000856817 8564_ $$uhttps://juser.fz-juelich.de/record/856817/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf$$yOpenAccess
000856817 8564_ $$uhttps://juser.fz-juelich.de/record/856817/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856817 8564_ $$uhttps://juser.fz-juelich.de/record/856817/files/s1793962318500484.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856817 909CO $$ooai:juser.fz-juelich.de:856817$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000856817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5089$$aForschungszentrum Jülich$$b0$$kFZJ
000856817 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000856817 9141_ $$y2018
000856817 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000856817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856817 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000856817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000856817 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000856817 9801_ $$aFullTexts
000856817 980__ $$ajournal
000856817 980__ $$aVDB
000856817 980__ $$aI:(DE-Juel1)IEK-4-20101013
000856817 980__ $$aUNRESTRICTED
000856817 981__ $$aI:(DE-Juel1)IFN-1-20101013