001     856817
005     20240711113912.0
024 7 _ |a 10.1142/S1793962318500484
|2 doi
024 7 _ |a 2128/19888
|2 Handle
024 7 _ |a WOS:000454060600013
|2 WOS
037 _ _ |a FZJ-2018-06158
082 _ _ |a 004
100 1 _ |a Tokar, Mikhail
|0 P:(DE-Juel1)5089
|b 0
|e Corresponding author
245 _ _ |a Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma
260 _ _ |a Singapore [u.a.]
|c 2018
|b World Scientific
264 _ 1 |3 online
|2 Crossref
|b World Scientific Pub Co Pte Lt
|c 2018-10-30
264 _ 1 |3 print
|2 Crossref
|b World Scientific Pub Co Pte Lt
|c 2018-10-01
264 _ 1 |3 print
|2 Crossref
|b World Scientific Pub Co Pte Lt
|c 2018-10-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540904638_9674
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a By reaching the first wall of a fusion reactor, charged plasma particles, electrons and ions are recombined into neutral molecules and atoms of hydrogen isotopes. These species recycle back into the plasma volume and participate, in particular, in charge–exchange (cx) collisions with ions. As a result, hot atoms with chaotically directed velocities are generated and some of them hit the wall. Statistical Monte Carlo methods often used to model the behavior of cx atoms are too time-consuming for comprehensive parameter studies. Recently1 an alternative iteration approach to solve one-dimensional kinetic equation2 has been significantly accelerated, by a factor of 30–50, by applying a pass method to evaluate the arising integrals from functions, involving the ion velocity distribution. Here, this approach is used by solving a two-dimensional kinetic equation, describing the transport of cx atoms in the vicinity of an opening in the wall, e.g., the entrance of a duct guiding to a diagnostic installation. To assess the erosion rate and lifetime of the installation, one need to know the energy spectrum of hot cx atoms escaping from the plasma into the duct. Calculations are done for a first mirror of molybdenum under plasma conditions expected in a fusion reactor like DEMO.3,4 The results of kinetic modeling are compared with those found by using a diffusion approximation5 relevant for cx atoms if the time between cx collisions with ions is much smaller than the time till the ionization of atoms by electrons. The present more exact kinetic consideration predicts a mirror erosion rate by a factor of 2 larger than the approximate diffusion approach.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 1 8 |a 10.1142/s1793962318500484
|b : World Scientific Pub Co Pte Lt, 2018-10-01
|n 05
|p 1850048
|3 journal-article
|2 Crossref
|t International Journal of Modeling, Simulation, and Scientific Computing
|v 09
|y 2018
|x 1793-9623
773 _ _ |a 10.1142/S1793962318500484
|g Vol. 09, no. 05, p. 1850048 -
|0 PERI:(DE-600)2897753-1
|n 05
|p 1850048
|t International journal of modeling, simulation, and scientific computing
|v 09
|y 2018
|x 1793-9623
856 4 _ |u https://juser.fz-juelich.de/record/856817/files/s1793962318500484.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/856817/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856817/files/Tokar_2017_J._Phys.__Conf._Ser._936_012009.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/856817/files/s1793962318500484.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:856817
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5089
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21